深圳民用住房管设计管道改道
设备位置的因素:比较经济合理的设备平面布置都是在管廊的两侧按工艺流程顺序布置设备,因此顺理成章与管廊左侧设备联系的管道布置在管廊的左侧而与右侧设备联系的管道布置在管廊的右侧。管廊的中间宜布置公用工程管道,易于向两侧引出。三、输送物料性质的因素:低温管道和不宜受热的物料管道,如液化烃、冷冻管道等,不应靠近蒸汽管道或不保温的热管道布置;氧气管道不宜与可燃气体、可燃液体管道相邻布置;腐蚀性介质的管道,应布置在下层但不应布置在驱动设备的正上方。对于双层管廊,总原则是上层布置公用工程管道,下层布置工艺管道。通常是气体管道、热的管道、敷设距离较长的工艺管道宜布置在上层;液体的、冷的、液化石油气、化学剂及其他有腐蚀性介质的管道宜布置在下层。因此,公用工程管道中的蒸汽、压缩空气、氮气、氧气、燃料气、火炬线,与管桥顶层设备有关的管道及其他工艺气体管道布置在上层;新鲜水、循环水等液体公用工程管道布置在下层或上层;工艺管道应视其两侧所连接的设备管嘴标高布置在上层或下层,以便使管道“步步高”或“步步低”,当没有调节阀在较低位置时,管道不得出现袋形。
深圳民用住房管设计管道改道
住宅建筑的排水管道看似简单,在设计中稍有疏漏就容易出现种种问题。正确的选择排水系统的形式及设计施工方案能住宅排水系统的正常应用。在设计施工应掌握新方法、新思路、新材料的运用,使得设计更加合理、人性化。1(GBJ15- 88 )建筑给水排水设计规范. 北京: 中国计划出版社, 1997
2赵锂. 住宅建筑给水排水设计. 给水排水, 2000, 26( 7) : 44~ 47
深圳民用住房管设计管道改道
15、,度危害介质管道不宜埋地敷设。当工艺要求埋地敷设时,应有监测泄漏、腐蚀、收集有害流体等的措施。6.2 埋地管道设计原则a) 埋地管道的走向、敷设,埋地管道与连接系统的相互影响;b) 材料、施工规范和质量控制;c) 运行程序和控制;d) 防腐蚀;e) 外部影响的减轻及管道的防护。6.3 埋地管道的走向应进行详细规划,并应经业主确定同意。在规划图纸中,应包括如下几个部分:a) 埋地管道的走向、定位尺寸及埋设标高;b) 埋地部分的其他设施,如电缆沟等,也应包括将来计划实施的埋地设施;c) 划定埋地管道建设区域内地上部分道路及其他地上设施。6.4 直埋管道的设计要求6.4.1 工厂区
14、则6.1 概述6.1.1 本章节是指工厂区域内埋地管道布置的设计原则。埋地管道分为直埋敷设和管沟敷设。6.1.2 工厂区域内埋地敷设的管道对人员和设备存在潜在的危险和不因素,埋地管道布置应妥善解决防冻、防凝结、吹扫、排液、防外腐蚀及承受外荷载等问题,并应遵守有关国家及当地的规定。6.1.3 管道只有在不可能在地上架空敷设时,才采用埋地敷设。a) 输送介质无腐蚀性、和无爆炸危险的液体、气体管道可直埋敷设;b) 无法在地上架空敷设,而又不宜直埋敷设的管道可在管沟内敷设;c) 因工艺要求无法架空的可燃介质、有毒介质、有腐蚀性介质的管道,需要埋地敷设时,应采取一定的保护措施;d) 除需要外
顶管施工采用挤压式所以在施工中还需注意:1) 每次顶进的长度应根据车斗的容积、起吊能力和地面运输条件综合确定;2) 工具管开始顶进和接近顶完时,应采用手工挖土缓慢顶进;3) 在市政管道顶进时,应工具管转动;4) 在临时停止管道顶进时,应将管道的喇叭口切入土层。在市政排水管道顶管结束后,管节接口内侧间隙将按设计要求处理。
2.2 市政排水管道顶管管线的设计
空气压缩管道设计常见问题与解决方案在工业生产中,压缩空气被视为“第四大能源”,然而其管道设计中的问题却常常被忽视,导致能源浪费和设备效率低下。压缩空气作为工厂中广泛使用的动力源,其管道设计的好坏直接影响到整个系统的效率和可靠性。不合理的设计会导致压力下降、能源浪费、空气质量下降等问题,进而影响生产效率和设备寿命。本文将探讨压缩空气管道设计中的常见问题,并提供相应的解决方案,帮助工程师设计出更高效、可靠的压缩空气管道系统。
01 管网布局不合理,系统压力不稳定
随意抽头与纵横交错的管路布局是压缩空气系统中最常见的问题之一。许多工厂在初期规划时缺乏全盘考虑,根据短期需要随意抽头,四处走管。这种无层次区分的管道布局不仅不利于统一管理,更导致气体介质分配不均,系统压力无法得到有效补充和平衡。传统树状结构在覆盖面积大、供气点多的情况下容易形成盲端和下级管路之间的气体回流,造成压力波动。
解决这一问题的关键是采用环状管网设计。将整个管网系统设计成集中供应的三级环状管网配置:第一级主管线环绕整个厂房;第二级按厂房区域分成若干部分,每部分形成二级环路;第三级由二级环路就近取点,引管接到用气设备。这样的设计使得任何位置均可获得双方面的压缩空气,当某支线用气量突然大增时,可迅速补充,减少压力降。
在环状主干线上配置适当阀门,有利于独立控制、有效调控和检修切断。对于用气量大但对压力要求不高的用气点,可安装减压阀以减少其用气时对系统压力的影响。
02 管道规格混乱,压力损失严重压缩空气管道系统中,管径选择不当是导致压力损失的主要原因之一。常见的问题包括主管路口径过小,支路管径任意放大或缩小,以及末端过滤器众多。这些因素增大了系统的压力降,在接头处产生混流情况,导致压力损失加大,影响管路的使用寿命和气体稳定性。
管路设计中应遵循的基本原则是:配管管路压力降不得超过空压机设定压力的5%,因此配管时应选用较大的管径。系统压力在1.5MPa以下的压缩空气,其输送管内的流速须在15m/sec以下,以避免过大的压力降。
合理的管道规格配置应当根据各级需求合理设计。例如,在一个改造案例中,主路管径采用φ89mm的不锈钢管;支路管和次级管的安装规格分别为φ56mm和φ22mm的不锈钢管。对于个别用气量较大的设备,管径可适当调整。
减少弯头使用和管径突变也是降低压力损失的重要措施。主管路不要任意缩小,如必须缩小或放大管路时须使用渐缩管,否则在接头处会有混流情况发生,导致大的压力损失。
03 管道泄漏,能源浪费
气体泄漏是压缩空气系统中最为突出的能源浪费问题。与水相比较,气体更易泄露且渗透能力更强。
所有接口必须严密不漏。选择合适的垫片,焊口焊接应清理干净氧化铁,拧紧后的法兰螺栓应留有继续拧紧的余地。拧好的法兰不得有张口、偏口、错口、别劲、间隙不匀等缺陷。
有效的泄漏检测方法包括:全厂管线路以超音波测漏仪及肥皂水作测漏总体检,以检查出些微泄漏处。对于非防爆型电气箱,正压用管路入口可增设精密流量调节阀,降低排放量。
管道材料选择也会影响泄漏情况。对配料室、高空人烟罕至处,可考虑将PU管改为铜管配管。依制程区特性将部分快速接头改为铜接头使用,减少快速接头泄漏。PU软管可尽量使用PE软管。
04 水与污染物管理不当
压缩空气中的水与污染物是导致管道和设备故障的主要原因。来自空气压缩机的水滴和油在输送管中混合并形成乳液,随空气流动流过主输送管的端部。这种乳液会降低阀类和气缸等气动设备的功能。
防止污染物进入设备的关键是在支管路接入前去除乳液。配管方法的要点包括:在输送主管道中的空气流动方向形成一个斜坡(每1m倾斜1cm左右)。配送支管道设计在输送主管道的上面。在低的地方或者配管末端设置排水单元。
合理的系统布局对防止污染至关重要。空压机之后如果有储气罐及干燥机等净化缓冲设施,理想的配管应是空压机+储气罐+前过滤器+干燥机+后过滤器+精过滤器。储气罐可将部分冷凝水滤除,同时储气罐亦有降低气体排气温度的功能。较低温度且含水量较少的空气再进入干燥机,可减轻干燥机或过滤器的负荷。
05 管道支撑与热应力问题
管道支撑不足会导致管道系统不稳定,影响设备运行。压缩空气管道一般管径较小,布置时应尽量利用建筑物,通廊和大管道,将管道支架焊接在上面。这样可以尽量减少独立落地支架数量。
管道支架受力应使用相应软件计算,在受力允许条件下,支架形式尽量采用限位支架,允许管道有轴向位移。这样在直管段不长的情况下,可不设固定支架和补偿器,简化管道形式,降低管道造价,也有利于现场施工。
防止热应力影响是管道设计中的重要考虑因素。管道受热膨胀产生的热应力易使压缩机及驱动设备的轴发生偏移及扭曲,从而导致设备发生震动、报警,严重时甚至损坏设备。因此,管路设计应有预见性地对热应力管道进行管道布置,此外还需进行应力计算,以满足厂家对管口的受力要求。
06 储气罐配置不足,压力波动大
储气罐在系统中的重要作用往往被忽视。在许多系统中,除上游压缩空气站处设有储气罐外,中间环节无缓冲储气罐配置。
在各二级管路系统中增设储气罐可以解决因系统短时用气量很大而引起的压力波动问题。除原有压缩空气站处的储气罐外,各二级管路系统中安装缓冲储能的不锈钢压缩空气储气罐,解决因系统短时用气量很大而引起的压力波动问题。
储气罐的容量选择有明确的标准。若系统的空气用量很大且时间很短,瞬时用气量变化很大,宜加装一储气罐作为缓冲之用(其容量应大于或等于最大瞬时气量的20%)。这样可以减少空压机组频繁加载或卸荷的次数,减少控制元件动作次数,对保持空压机的运行可靠性有很大的益处。一般情况下,可选择容量为排气量20%的储气罐。
07 现代管道设计工具与方法
三维软件在设计中的应用已成为国际工程中的标准做法。比较合理的设计方式是直接采用三维软件建模,虽然前期需要做大量工作。但管道三维模型建好之后,可以直接生成平面图、轴测图、设备表、材料表等,后期出图可节省大量的工作,提高效率,同时也保证了管道出图的准确性,不会发生碰撞。
厂区管网图设计应全面考虑,起点一般为厂区压缩空气站出口或厂区预留接点,终点为各个用户点。各用户点有室内和室外之分,在条件允许的情况下,整个厂区室内和室外用户点尽量在同一张平面图或轴测图表示,即用一张图纸表示整个厂区所有用户点,这样方便出图和阅读。
应力分析软件如CAESARⅡ软件可用于与常规管路设计方法进行应力对比分析。这对于重要管道,特别是受热膨胀影响的管道设计至关重要,可以预防因热应力导致的设备问题。
良好的管道设计是确保压缩空气系统高效运行的关键。通过采用环状管网、合理选择管径、严格防漏、有效管理污染物、科学配置储气罐以及使用现代设计工具,可以构建出高效可靠的压缩空气系统。正如人体血管的健康决定了生命活力,压缩空气管道的设计质量直接决定了工业生产的“生命力”——只有畅通无阻、稳定可靠的压缩空气供应,才能保证工厂各个生产设备高效运转。