广东商业燃气改管设计考量

名称:广东商业燃气改管设计考量

供应商:深圳市诚然设计有限公司

价格:面议

最小起订量:1/件

地址:深圳市龙华区龙华街道清华社区清湖路贤华名苑C栋14A、14B

手机:15818621851

联系人:业务经理 (请说在中科商务网上看到)

产品编号:223838958

更新时间:2026-01-22

发布者IP:113.90.227.151

详细说明
产品参数
品牌:深圳市诚然设计有限公司
项目:燃气管道设计、居民燃气改造设计、居民燃气改管设计、商业燃气管道设计、商业燃气改管设计、工业燃气管道设
服务方式:线上咨询、线下测量
付款方式:现金付款
范围:全国
公司地址:广东深圳
产品优势
产品特点: 燃气管道设计、居民燃气改造设计、居民燃气改管设计、商业燃气管道设计、商业燃气改管设计、工业燃气管道设
服务特点: 公司将以坚定的信念,自成立来我公司本着“科技创新、佳品倍出、诚实守信、服务至上”的经营理念热忱的服务于广大业主。几年业,我们始终贯彻以人为本的管理理念,构建和谐的工作氛围,积极参加重点工程建设,以认真负责的处事风格和力求完美的设计思路,赢得了社会各界的关心和肯定。

  广东商业燃气改管设计考量

  (二)建筑排水管配件产品选用安装及使用方面存在的问题建筑排水管配件的产品研发、选用安装及使用方面存在的问题,是建筑排水系统水封失效的另一个重要原因。突出表现在:

  (1)、有试验显示,在室内排水器具中地漏水封易受到破坏。不合格地漏的大量使用成为住宅排水系统水封失效的主要原因之一。

  目前不合格地漏主要有四大类:

  一是水封深度不能达到 50mm 的地漏,有些甚至不到 20mm;

  8.连接方式:管道连接方式的选择对管道系统的性和性有重要影响。应根据管道的材料、直径、压力等因素选择合适的连接方式,如法兰连接、焊接连接等。同时,连接过程应严格按照相关标准和规范进行,确保连接的牢固性和密封性。鉴于管道设计的复杂性,是在工业管道等复杂系统的设计中,为了确保管道运行的性和效率,的管道设计和分析软件通常会被引入作为关键工具。

  在当前的市场上,Bentley的AutoPIPE在管道应力分析和设计领域堪称翘楚。其的功能和性能,使得AutoPIPE在众多同类软件中脱颖而出,成为行业内的佼佼者。

  2.2正常使用限状态钢管管道按正常使用限状态进行验算时,各种作用效应均应采用作用代表值计算。其作用效应组合设计值应满足文献[2]532的要求。3钢管输水管线所受应力分类

  虽然在管道设计的相关规范、标准中没有明确给出应力分类的定义,但根据产生应力的荷载不同,可将其划分为一次应力和二次应力两大类[3]。管道强度破坏主要是由一次应力引起的断裂破坏和由二次应力引起的疲劳断裂破坏。一次应力是由压力、重力、冲击荷载、其他外力荷载等机械外荷载引起的正应力和剪切应力,它是平衡外力荷载所需要的应力。一次应力是非自限性的,它随着所加载荷的增加而增加,超过材料的屈服限或者持久强度时,将使管道发生塑性破坏或总体变形。因此,在管道的应力分析中,首先应使一次应力满足允许应力值。管道的二次应力通常是由于热胀冷缩、附加位移、安装误差、振动荷载等位移载荷引起的,是由于管道的变形受到约束所产生的正应力和剪应力。它本身不直接与外力平衡。而是为满足位移约束条件或管道自身变形的连续要求所的应力。其特点是具有自限性,即部屈服或小量塑性变形就可以使位移约束条件或自身变形连续要求得到满足,通过自身的变形协调就能使应力降低。一般来讲,对于塑性良好的钢管,只要加载,二次应力不会导致管道的破坏。也就是说,二次应力引起的主要是疲劳破坏。由一次应力和二次应力的荷载类型和受力特点可知,由于一次应力没有自限性,所以它比二次应力更危险,应该受到更加严格的限制。基于目前给排水管道工程结构设计原则,对于普通金属管线仅需要考虑环向应力、纵向应力及组合折算应力影响,即上述管道应力分析中的一次应力作用。对于管道的热膨胀、安装阶段的附加位移应力及焊缝焊接的残余应力等二次应力均未纳入结构计算范畴,其应力的影响范围及量化亦比较困难。

  广东商业燃气改管设计考量

  施工组织设计本工程由具有管道工程施工经验的施工单位承担,施工队伍由项目经理、技术负责人、施工员、员、质量员等组成。施工队伍具备以下特点:

  (1)具有较高的技术水平,能够熟练掌握管道工程施工技术。

  (2)具有较强的组织协调能力,能够确保工程顺利进行。

  (3)具有良好的职业道德,能够

  原文来自于我的微信公众号“化工配管杂记”。

  项目名称为烟台长输供热管网项目;项目建设单位为烟台长输供热有限公司。从公示的项目区位图可以看出,项目位置覆盖烟台市蓬莱区、黄渤海新区、福山区、芝罘区、莱山区。公示中显示,该项目用地应控制在3.6492公顷以内,管线总长约77.6公里(管线从万华余热出线后,沿九曲河沿岸-西安路-潍烟铁路到台北南路,长度22.9km;进入福山区后沿柳子河路-臧家西路-同兴路-永达街-夹河-沈海高速,长度18.2km;进入芝罘区后从沈海高速向北,经规划双碳科普馆西路到幸福南路-铁路西(沈海路)-幸福西路-铁路南(沈海路)-幸福北路-福成路,沈海高速向南经红旗路到蓝烟线西侧规划路-港城大街-通姜路,长度29.3km;再到莱山区凤凰大街-山东路-凤凰山西侧防火路,长度7.2km;),管道地埋平均覆土1.5—2.5米,管径为DN1600长约43.1KM、DN1400长约11.8KM、DN1000长约11.6KM、DN800长约7.1KM、DN600长约4.0KM。

  空压管路(压缩空气管路)设计是压缩空气系统中至关重要的环节,直接影响系统效率、能耗、设备寿命和运行稳定性。以下从设计原则、关键参数、管路布局、材料选择、辅助设备配置等方面进行详细介绍:

  一、空压管路设计原则

  1. 压降最小化

  - 目标:控制管路压降在系统压力的 5%~10% 以内(通常不超过0.1~0.2

  MPa)。

  - 措施:

  - 选择足够大的管径,降低流速(推荐流速:6~10 m/s)。

  - 减少管路弯头、阀门等局部阻力部件,优先使用大弧度弯头(避免直角弯)。

  -

  优化管路布局,缩短总长度。

  2.

  排水与防冷凝

  - 管路需保持一定坡度(1%~2%),并在低点设置排水点(如集水袋、自动排水器)。

  - 避免管路出现“U”形或“袋状”结构,防止积水滞留。

  3. 系统扩展性

  - 预留未来扩容接口,环路设计(环形管网)可均衡压力分布,提高供气稳定性。

  4. 安全性

  - 管路需耐压、耐腐蚀,避免振动导致泄漏或破裂。

  - 高温管路需保温隔热,防止烫伤或热量损失。

  二、空压管路设计步骤

  1. 确定需求参数

  - 流量(Q):根据用气设备总耗气量(标况流量,单位:Nm³/min)乘以同时使用系数(通常0.6~0.9)。

  - 压力(P):系统工作压力(如0.7 MPa)+ 管路压降余量。

  - 空气质量要求:是否需要干燥(露点等级)、过滤精度(如颗粒物≤5

  μm)。

  2. 计算管径

  - 公式:

  [d = sqrt{frac{4Q}{pi v}} ]

  - (d):管内径(mm)

  - (Q):压缩空气流量(Nm³/min)

  - (v):允许流速(m/s)

  - 经验速查表:

  | 流量(Nm³/min) | 推荐管径(mm) |

  |----------------|----------------|

  | 5~10 | 25~40 |

  | 10~20 | 40~50 |

  | 20~30 | 50~80 |

  3. 管路布局设计

  - 环路系统(推荐):

  - 环形主管道连接所有用气点,压力分布均匀,压降小。

  - 支管从主管顶部引出,避免冷凝水流入支管。

  - 树状系统(简单系统适用):

  - 主管道单向延伸,适合小型或低复杂度系统。

  4. 材料选择

  | 材料 | 优点 | 缺点

  | 适用场景 |

  |------------------|------------------------------|-----------------------------|---------------------------|

  | 铝合金

  | 轻便、耐腐蚀、低摩擦阻力 | 成本较高 | 中高压系统、洁净环境 |

  | 不锈钢 | 耐高温高压、寿命长

  | 成本高、安装复杂 | 食品/医药等高要求行业 |

  | 镀锌钢管 | 成本低、强度高 | 易生锈、需定期维护

  | 普通工业环境(干燥区域) |

  | PE/PVC塑料管 | 耐腐蚀、安装便捷 | 耐压能力低(≤1.0 MPa) | 低压、临时系统 |

  5. 辅助设备配置

  - 前置处理:空压机出口安装后冷却器、储气罐(缓冲压力波动)。

  - 干燥设备:

  - 冷冻式干燥机:露点3~10℃,适用于一般工业场景。

  - 吸附式干燥机:露点-20~-40℃,用于精密仪器或低温环境。

  - 过滤器:

  - 分级过滤(粗滤→精滤),去除油分、颗粒物(如0.01 μm级)。

  - 排水装置:自动排水器、集水袋(末端排水)。

  三、管路安装要点

  1. 坡度与排水

  - 主管道向排水点倾斜(坡度1%~2%),每30~50米设置排水点。

  - 支管从主管顶部引出,避免冷凝水流入支管。

  2. 管路支撑

  - 支架间距:钢管1.5~2.5米,塑料管1.0~1.5米。

  - 使用弹性支架或软连接,减少振动传递。

  3. 密封与测试

  - 螺纹连接需使用密封胶带或厌氧胶。

  - 安装后需进行压力测试(1.5倍工作压力,保压30分钟无泄漏)。

  四、节能优化措施

  1. 减少泄漏:定期检测(如超声波检漏),泄漏点及时修复。

  2. 压力分级:对低压需求设备单独供气,避免整体系统压力过高。

  3. 余热回收:利用空压机余热预热进气空气或供其他工艺使用。

  五、常见问题与解决方案

  | 问题 | 原因 | 解决方案 |

  |------------------|------------------------|---------------------------|

  | 压降过大 | 管径过小、弯头过多 | 增大管径,优化管路布局 |

  | 冷凝水积聚 | 坡度不足、排水失效 | 调整坡度,检查排水装置 |

  | 管道振动 | 支架固定不牢

  | 增加弹性支撑,加固连接点 |

  六、设计注意事项

  - 避免急弯:优先采用45°或圆弧弯头,减少湍流。

  - 远离热源:防止管路受热膨胀或冷缩变形。

  - 标识清晰:标注流向、压力等级、介质类型。

  通过科学设计,空压管路系统可实现高效、稳定、低能耗运行,同时延长设备寿命并降低维护成本。实际设计中需结合具体工况(如环境湿度、温度、用气设备分布)灵活调整方案。