佛山商场天然气改管设计深度解析
同一管道的两个折断符号在一张图中,折断符号的编号用小写英文字母表示。当管道在本图中断,转至其它图面表示(或由其它图中引来)时,应注明转至(或来自)的图纸编号。
(6) 弯头(elbow)转向
(7) 管道跨越与交叉
管道规格的单位为毫米,可省略不写。
低压流体用焊接钢管,管段规格应标注公称通径DN或压力PN。
目前国内采用的管道设计理论和计算方式,是按照预期的管道壁厚值,将内压同外压按照一定的荷载规则组合,用规范规定的验算公式,来复核管道的应力是否满足要求,然后再做变形控制及稳定性校核等。管线的结构设计中对一次应力通过静力计算已经进行了有效的控制。对于设计人员而言,如若管道位于不均匀的管基上,应值得重视。对于长距离的输水管线,所处的施工及边界条件复杂,二次应力需进行系统和综合长期考虑,现有的计算手段很难对其进行量化。可参考石油化工行业管线的计算经验,借助管道应力分析软件对整条管线模拟施工及运行条件进行综合分析。
其次,针对管道穿越伸缩缝问题,采用“不得穿越”等严格字符,没有必要。《建筑给水排水设计手册》中第二册12.2.3中所述“管道应尽量避免通过沉降缝、伸缩缝,通过时应采取有效措施”使用这种说法较为合适。沉降缝两侧的沉降差在结构设计时要进行的控制,针对不同的地质条件、不同层高的建筑物,采用不同的基础处理方法和构造对不均匀沉降进行控制,一般情况下,沉降缝两侧相对沉降值较小,如果沉降偏大,则会危机建筑物的基础稳定。因此对穿越沉降缝的管道来讲,通常情况下,只需采取相应的措施即可。
佛山商场天然气改管设计深度解析
适用范围的系统界定规程明确,其适用于高工作压力不小于 0.1 MPa、公称直径不小于 50 mm,且输送气体、蒸汽或易燃、易爆、有毒、有腐蚀性介质的工业管道。
该适用条件通过压力、尺寸和介质三要素,合理界定了特种设备监管边界,在避免监管范围过度扩张的同时,有效高风险管道脱离监管。
同时,规程明确将实施前已投用的长输管道站场内工艺管道纳入本规程进行使用管理,统一了长期以来在规程适用上的分歧,强化了工业管道管理体系的一致性。
3 制订地下管线防护措施,主动与产权部门联系,确定管线位置,按设计要求进行加固处理,施工中设专人防护;4 与供货商签订供货合同,工程质量,使货源能及时到场;
5 施工单位应制定切实可行的施工技术措施,确保该工程按质、按期竣工。
(一)施工工期及质量要求
招标文件要求:本工程计划开工日期为2002年9月30日,有效施工工期70天(日历天数)以内。
空压管路(压缩空气管路)设计是压缩空气系统中至关重要的环节,直接影响系统效率、能耗、设备寿命和运行稳定性。以下从设计原则、关键参数、管路布局、材料选择、辅助设备配置等方面进行详细介绍:
一、空压管路设计原则
1. 压降最小化
- 目标:控制管路压降在系统压力的 5%~10% 以内(通常不超过0.1~0.2
MPa)。
- 措施:
- 选择足够大的管径,降低流速(推荐流速:6~10 m/s)。
- 减少管路弯头、阀门等局部阻力部件,优先使用大弧度弯头(避免直角弯)。
-
优化管路布局,缩短总长度。
2.
排水与防冷凝
- 管路需保持一定坡度(1%~2%),并在低点设置排水点(如集水袋、自动排水器)。
- 避免管路出现“U”形或“袋状”结构,防止积水滞留。
3. 系统扩展性
- 预留未来扩容接口,环路设计(环形管网)可均衡压力分布,提高供气稳定性。
4. 安全性
- 管路需耐压、耐腐蚀,避免振动导致泄漏或破裂。
- 高温管路需保温隔热,防止烫伤或热量损失。
二、空压管路设计步骤
1. 确定需求参数
- 流量(Q):根据用气设备总耗气量(标况流量,单位:Nm³/min)乘以同时使用系数(通常0.6~0.9)。
- 压力(P):系统工作压力(如0.7 MPa)+ 管路压降余量。
- 空气质量要求:是否需要干燥(露点等级)、过滤精度(如颗粒物≤5
μm)。
2. 计算管径
- 公式:
[d = sqrt{frac{4Q}{pi v}} ]
- (d):管内径(mm)
- (Q):压缩空气流量(Nm³/min)
- (v):允许流速(m/s)
- 经验速查表:
| 流量(Nm³/min) | 推荐管径(mm) |
|----------------|----------------|
| 5~10 | 25~40 |
| 10~20 | 40~50 |
| 20~30 | 50~80 |
3. 管路布局设计
- 环路系统(推荐):
- 环形主管道连接所有用气点,压力分布均匀,压降小。
- 支管从主管顶部引出,避免冷凝水流入支管。
- 树状系统(简单系统适用):
- 主管道单向延伸,适合小型或低复杂度系统。
4. 材料选择
| 材料 | 优点 | 缺点
| 适用场景 |
|------------------|------------------------------|-----------------------------|---------------------------|
| 铝合金
| 轻便、耐腐蚀、低摩擦阻力 | 成本较高 | 中高压系统、洁净环境 |
| 不锈钢 | 耐高温高压、寿命长
| 成本高、安装复杂 | 食品/医药等高要求行业 |
| 镀锌钢管 | 成本低、强度高 | 易生锈、需定期维护
| 普通工业环境(干燥区域) |
| PE/PVC塑料管 | 耐腐蚀、安装便捷 | 耐压能力低(≤1.0 MPa) | 低压、临时系统 |
5. 辅助设备配置
- 前置处理:空压机出口安装后冷却器、储气罐(缓冲压力波动)。
- 干燥设备:
- 冷冻式干燥机:露点3~10℃,适用于一般工业场景。
- 吸附式干燥机:露点-20~-40℃,用于精密仪器或低温环境。
- 过滤器:
- 分级过滤(粗滤→精滤),去除油分、颗粒物(如0.01 μm级)。
- 排水装置:自动排水器、集水袋(末端排水)。
三、管路安装要点
1. 坡度与排水
- 主管道向排水点倾斜(坡度1%~2%),每30~50米设置排水点。
- 支管从主管顶部引出,避免冷凝水流入支管。
2. 管路支撑
- 支架间距:钢管1.5~2.5米,塑料管1.0~1.5米。
- 使用弹性支架或软连接,减少振动传递。
3. 密封与测试
- 螺纹连接需使用密封胶带或厌氧胶。
- 安装后需进行压力测试(1.5倍工作压力,保压30分钟无泄漏)。
四、节能优化措施
1. 减少泄漏:定期检测(如超声波检漏),泄漏点及时修复。
2. 压力分级:对低压需求设备单独供气,避免整体系统压力过高。
3. 余热回收:利用空压机余热预热进气空气或供其他工艺使用。
五、常见问题与解决方案
| 问题 | 原因 | 解决方案 |
|------------------|------------------------|---------------------------|
| 压降过大 | 管径过小、弯头过多 | 增大管径,优化管路布局 |
| 冷凝水积聚 | 坡度不足、排水失效 | 调整坡度,检查排水装置 |
| 管道振动 | 支架固定不牢
| 增加弹性支撑,加固连接点 |
六、设计注意事项
- 避免急弯:优先采用45°或圆弧弯头,减少湍流。
- 远离热源:防止管路受热膨胀或冷缩变形。
- 标识清晰:标注流向、压力等级、介质类型。
通过科学设计,空压管路系统可实现高效、稳定、低能耗运行,同时延长设备寿命并降低维护成本。实际设计中需结合具体工况(如环境湿度、温度、用气设备分布)灵活调整方案。