广东公共设施管道设计注意事项
随着我国工业结构持续升级,新材料、新工艺加快应用,生产装置大型化、集成化程度不断提高,压力管道的运行环境和事故风险形态发生了显著变化。原有监管规则在风险分级精细化、事故预防导向、主体责任落实以及技术适应性等方面,逐步显现出限性。在此背景下,《TSG 31—2025 压力管道技术监察规程》(以下简称 TSG 31-2025)正式发布。该规程并非对既有条文的部修订,而是对压力管道监管体系的一次系统性重构,标志着我国压力管道监管模式由以设备参数为核心,向以风险防控和全生命周期管理为核心的方向转变。
9、门宜安装在水平管道上,阀杆方向宜垂直向上;f) 低温管道的间距应根据保冷后的法兰、阀门、测量元件的厚度以及管道的位移确定;g) 低温介质管道上的法兰不宜与弯头或三通直接焊接。5 泄放管道的设计原则5.1 放净与放空管道设计原则5.1.1 管道系统中的高点或低点应根据操作、检修的要求,设置放空或放净。5.1.2 为了尽量减少滞留在管道内介质的危害程度,如水锤、真空破裂、腐蚀及不能控制的化学反应,应在管道低点设置放净,高点设置放空。5.1.3 管道需要放净时,管道需设置坡度,并设置放净点。下列介质管道,需要考虑放净:a) 多功能的管线;b) 管道拆除时,会产生有害及危险介质;c) 管道中的
< 气体流动:密度低、可压缩性强,同一路径内压力会下降。管径一般选得更大以减少压降,且要设计的回气斜度,凝结液体在管底积累——否则压缩机一旦进液,后果不堪设想。
2、支吊架与热膨胀处理
< 液体管线:
因运行温度波动相对小,膨胀补偿主要针对设备停开机过程;支架要管线“下垂”,同时考虑热棉厚度,避免直接焊点冷桥。
< 气体管线:
广东公共设施管道设计注意事项
给水支管布置与敷设室内给水管道的布置受建筑结构、用水要求、配水点和分户给水管道的人户方式,以及供暖、通风、空调和供电等其他建筑设备工程管线布置等因素的影响。给水管道的敷设有明装、暗装两种形式。在以往的建筑设计中,因管材的限制,多采用明装方式。明装即管道外漏,其优点是安装维修方便,造价低;缺点是影响美观,表面易结露、积灰尘。目前,因给水管道材质的多样化,给管道暗装提供了条件。 建筑给排水设计规范规定,给水支管宜敷设在楼(地)面的找平层或沿墙敷设在管槽内,敷设在找平层或管槽内的给水支管外径不宜大于 25mm。 暗装管道可以有效地保护管道不受外力破坏,又不影响室内美观,但施工时不应将管道接头直接埋入垫层或墙壁内,否则漏水时很难补救,维修时费工费时。另外还应注意:设于找平层内或沿墙敷设在管槽内的给水支管施工完毕后,应在其位置做上明显的标记,以免住户装修时破坏给水管道。
4结合调查情况对现有埋地钢管病害进行分析通过对管线使用及维护部门的走访及调查,众多钢管管线漏损及病害主要分为以下几种类型:(1)管材本身质量问题。管材细微裂缝施工时未能及时发现,运行时经水压等作用致使微小裂纹逐步扩大而破裂;(2)钢管现场对接焊缝的裂开、断裂及变形破坏;(3)阀门及管件处安装误差,导致出现预拉应力叠加焊缝病害,造成管件或者阀门破坏。其中焊缝病害问题占大多数。
空压管路(压缩空气管路)设计是压缩空气系统中至关重要的环节,直接影响系统效率、能耗、设备寿命和运行稳定性。以下从设计原则、关键参数、管路布局、材料选择、辅助设备配置等方面进行详细介绍:
一、空压管路设计原则
1. 压降最小化
- 目标:控制管路压降在系统压力的 5%~10% 以内(通常不超过0.1~0.2
MPa)。
- 措施:
- 选择足够大的管径,降低流速(推荐流速:6~10 m/s)。
- 减少管路弯头、阀门等局部阻力部件,优先使用大弧度弯头(避免直角弯)。
-
优化管路布局,缩短总长度。
2.
排水与防冷凝
- 管路需保持一定坡度(1%~2%),并在低点设置排水点(如集水袋、自动排水器)。
- 避免管路出现“U”形或“袋状”结构,防止积水滞留。
3. 系统扩展性
- 预留未来扩容接口,环路设计(环形管网)可均衡压力分布,提高供气稳定性。
4. 安全性
- 管路需耐压、耐腐蚀,避免振动导致泄漏或破裂。
- 高温管路需保温隔热,防止烫伤或热量损失。
二、空压管路设计步骤
1. 确定需求参数
- 流量(Q):根据用气设备总耗气量(标况流量,单位:Nm³/min)乘以同时使用系数(通常0.6~0.9)。
- 压力(P):系统工作压力(如0.7 MPa)+ 管路压降余量。
- 空气质量要求:是否需要干燥(露点等级)、过滤精度(如颗粒物≤5
μm)。
2. 计算管径
- 公式:
[d = sqrt{frac{4Q}{pi v}} ]
- (d):管内径(mm)
- (Q):压缩空气流量(Nm³/min)
- (v):允许流速(m/s)
- 经验速查表:
| 流量(Nm³/min) | 推荐管径(mm) |
|----------------|----------------|
| 5~10 | 25~40 |
| 10~20 | 40~50 |
| 20~30 | 50~80 |
3. 管路布局设计
- 环路系统(推荐):
- 环形主管道连接所有用气点,压力分布均匀,压降小。
- 支管从主管顶部引出,避免冷凝水流入支管。
- 树状系统(简单系统适用):
- 主管道单向延伸,适合小型或低复杂度系统。
4. 材料选择
| 材料 | 优点 | 缺点
| 适用场景 |
|------------------|------------------------------|-----------------------------|---------------------------|
| 铝合金
| 轻便、耐腐蚀、低摩擦阻力 | 成本较高 | 中高压系统、洁净环境 |
| 不锈钢 | 耐高温高压、寿命长
| 成本高、安装复杂 | 食品/医药等高要求行业 |
| 镀锌钢管 | 成本低、强度高 | 易生锈、需定期维护
| 普通工业环境(干燥区域) |
| PE/PVC塑料管 | 耐腐蚀、安装便捷 | 耐压能力低(≤1.0 MPa) | 低压、临时系统 |
5. 辅助设备配置
- 前置处理:空压机出口安装后冷却器、储气罐(缓冲压力波动)。
- 干燥设备:
- 冷冻式干燥机:露点3~10℃,适用于一般工业场景。
- 吸附式干燥机:露点-20~-40℃,用于精密仪器或低温环境。
- 过滤器:
- 分级过滤(粗滤→精滤),去除油分、颗粒物(如0.01 μm级)。
- 排水装置:自动排水器、集水袋(末端排水)。
三、管路安装要点
1. 坡度与排水
- 主管道向排水点倾斜(坡度1%~2%),每30~50米设置排水点。
- 支管从主管顶部引出,避免冷凝水流入支管。
2. 管路支撑
- 支架间距:钢管1.5~2.5米,塑料管1.0~1.5米。
- 使用弹性支架或软连接,减少振动传递。
3. 密封与测试
- 螺纹连接需使用密封胶带或厌氧胶。
- 安装后需进行压力测试(1.5倍工作压力,保压30分钟无泄漏)。
四、节能优化措施
1. 减少泄漏:定期检测(如超声波检漏),泄漏点及时修复。
2. 压力分级:对低压需求设备单独供气,避免整体系统压力过高。
3. 余热回收:利用空压机余热预热进气空气或供其他工艺使用。
五、常见问题与解决方案
| 问题 | 原因 | 解决方案 |
|------------------|------------------------|---------------------------|
| 压降过大 | 管径过小、弯头过多 | 增大管径,优化管路布局 |
| 冷凝水积聚 | 坡度不足、排水失效 | 调整坡度,检查排水装置 |
| 管道振动 | 支架固定不牢
| 增加弹性支撑,加固连接点 |
六、设计注意事项
- 避免急弯:优先采用45°或圆弧弯头,减少湍流。
- 远离热源:防止管路受热膨胀或冷缩变形。
- 标识清晰:标注流向、压力等级、介质类型。
通过科学设计,空压管路系统可实现高效、稳定、低能耗运行,同时延长设备寿命并降低维护成本。实际设计中需结合具体工况(如环境湿度、温度、用气设备分布)灵活调整方案。