详细说明
因为锂电池UPS与UPS铅酸蓄电池特性不同,充电曲线及回路不同,充电设备跟着不同厂牌UPS不同标准也有不同,所以在旧有UPS使用客户端在每年替换电池时,将铅酸蓄电池直接更换成锂电,几乎是不可能的任务。困难点更大的是,UPS蓄电池的标准12V电压,电容量从7AH到70AH都有,机房电力需求从100AH到500AH或是更高需求,铅酸蓄电池都是按需求串并联堆叠而成,。而锂电池组都有一个控制过充过放的保护板BMS,所以假如现在锂电池按蓄电池方式,以一个电压及电容量存一个单元,然后再按每个机房的电力需求进行并联堆叠,就会发生每个电池组BMS之间,因为每个电池组已存在的电压及电量不同,在充电或放电时产生保护状况,无法使用。
电池主要由外壳、正极、负极、电解液与隔膜组成,正极是通过起粘结作用的PVDF将钴酸锂粉末涂布于铝箔集流体两侧构成;负极结构与正极类似,由碳粉粘结于铜箔集流体两侧构成。锂离子电池具有电压高、比容量大、寿命长和无记忆效应等显著优点,自其商业化以来便快速占领了便携式电子电器设备的动力源市场,且产量逐年增大。使用寿命约2年,报废后的锂电池,如处理处置不当,其所含的六氟磷酸锂、碳酸酯类有机物以及钴、铜等重金属必然会对环境构成潜在的污染威胁。而另一方面,废锂电池中的钴、锂、铜及塑料等均是宝贵资源,具有极高的回收价值。因此,对废锂电池进行科学有效的处理,不仅具有显著的环境效益,而且具有良好的经济效益。
电器和电子设备(EEE)已经渗透到我们现代生活的方方面面,每年向超过120万吨的电池,其中包括80万吨的汽车电池。WEEE是欧洲增长快的废物流-每年增长3-5%。每年在28个国家以及挪威和瑞士生产约1000万吨的电子废料。这些废物中只有35%是通过回收系统收集和回收的。其余的65%要么非法,要么(这适用于大多数废物)在不符合标准的条件下被回收,或者被错误地与一般家庭垃圾一起处置。电子废弃物,俗称「电子垃圾」,是指被废弃使用的电器或电子设备,主要包括电冰箱、空调、电视机等家用电器以及计算机、手机等通讯电子产品所组成的淘汰品。每年大概产生 2000~5000 万吨电子垃圾,并以每年 3%~8% 的速度增长。但 2017 年以前,每年全世界产生的电子垃圾有高达 80% 被送到亚洲,其中 90% 丢弃在中国,相当于 72% 的电子垃圾要由中国来负担。
目前,废锂电池资源化研究主要集中于价值高的正极贵重金属钴和锂的回收,对负极材料的分离回收鲜见报道。为缓解经济快速发展而引发 的日趋严重的资源短缺与环境污染问题,对废旧物资实现全组分回收利用已成为全球共识。
锂电池负极中的铜(含量达35%左右)是一种广泛使用的重要生产原料,粘附于其上的碳粉,可作为塑料、橡胶等添加剂使用。因此,对废锂电池负极组成材料进行有效分离,实现废锂电池资源化,消除其相应的环境影响具有推动作用。常用的废锂电池资源化方法包括湿法冶金、火法冶金及机械物理法。相比于湿法及火法,机械物理法无需使用化学试剂,且能耗更低,是一种环境友好且高效的方法。基于锂电池负极结构特点,采用破碎筛分与气流分选组合工艺,对其进行分离富集研究,以实现废锂电池负极铜、铝与碳粉的高效分离回收。
这是因为锂离子电池具有更小的占地面积和出的充电能力。此外,锂离子电池的维护需求低,使用寿命长。但是,它们还需要的充电系统,电池管理以确保操作,并且不容易回收。因此,值得考虑的是传统铅酸和锂离子电池的替代品,例如薄板纯铅(TPPL)电池,该技术可提供与锂离子电池类似的性能优势,并具有比传统玻璃纤维隔板(AGM)电池更高的能源效率。锂离子电池技术的兴起电动汽车市场的增长导致锂离子电池技术的飞速发展。锂离子电池具有较高的充电接受度和充电能力。在市电频繁中断的地区,这种功能重要。锂离子电池使用电池管理系统(BMS)来控制充电的效率和性。