河源氟橡胶包金属粘接剂性价比高的牌子
特殊环境下的应用挑战
航天领域要求胶水在-55℃至230℃极端温度循环(100次)后仍保持密封性;深海设备需耐受70MPa静水压且防微生物附着;核电站用胶水要抗γ射线辐照(累计剂量>100kGy)。这些场景推动特种配方发展:添加聚酰亚胺纤维可提高高温尺寸稳定性;含氟硅烷的配方能抵抗高压渗透;苯基氟橡胶基胶水具有最优的耐辐照性。此类特种胶水价格可达常规品10倍以上,但能解决关键设备的"卡脖子"密封问题。
产品描述
德国希科SI Coatings 810021 是针对氟橡胶 FKM 材料粘接涂料.此产品可以通过如卷材涂布设备或刷涂、喷涂等方式涂布于镀锌件,铝材等金属表面。使用了本粘接涂层的基材适用于氟橡胶的热压与二次注塑成型
典型应用
SI COATINGS 810021 应用于各类对附着力和环境要求较高的产品上,如汽车密封条、密封圈等的制造等。
产品特点单涂,操作简单
***的耐腐蚀耐盐雾特性好的温度抗性
超高强度的粘接力和拉拔力
柔韧性强,涂布涂料的基材可任意弯折变型,涂料不脱落
产品属性
成分 树脂以及溶剂
颜 无透明 ,可调
粘度 (4 mm DIN-Cup) 10-14 s
密度 0.80-0.88 g/cm3
闪点 (ASTM D6454 CCCFP) 14 °C
质量固含量 17-21 %
保质期 12 个月
操作使用基材前处理
工业用途:
金属的表面需要用有机溶剂是碱性溶剂进行***清洗。铝材表面需要在清洁以后进行***的 酸洗。推荐不含铬的以氟化钛/氟化锆为基础的转化涂层以及铬化和磷化处理等处理方法。如果材料的使用环境没有防腐蚀的要求也可以考虑不适用转化涂层。
手工操作:
组件表面***无尘,没有油渍以及脂肪。对材料表面使用矿物或金刚砂射线进行粗糙处理可以有效增加粘接能力。增附剂的基础效果不会因为机械处理而改变。
通用:
化学催化气象沉积法(CCVD) ,等离子处理以及火焰处理法可以有效加强表面的浸润。有些产品也可以使用底漆。底漆以及增附剂构成的双层系统适用于对力学以及腐蚀抗性要求较大产品,使用底漆更可以提高生产与使用性。
搅拌
在使用或分装之前未稀释的 SI COATINGS 810021 搅拌混合均匀,一般推荐使用自动搅拌机在原包装内进行低速长时间的的搅拌,以容器底部无沉淀为准。若施工时间较长,如用于卷材涂料或 使用自动化涂布设备须保持轻微持续的搅动涂料,以免出现品质的差异。
涂布
根据施工条件要求以及涂料在基材表面的润湿度可相应调整涂料粘度。溶剂推荐请见下表
辊涂 一般不用稀释
刷涂 一般不用稀释
浸泡 可加 20% 无水乙醇或芳香类或酮类溶剂稀释
喷涂 可加 50% 无水乙醇或芳香类或酮类溶剂稀释***的干膜厚度为 5-10?m。
烘干
涂料可在相对低温的条件下如 80°C 条件下烘烤 15-20 分钟
粘接
注塑温度与各类氟橡胶材料有关,一般情况下推荐 170-190 度的硫化温度,后硫化的温度设置可达 220 摄氏度,因为***的温度抗性使后硫化不会对粘结产生***影响。
贮藏
在干燥清洁室温条件下 SI COATINGS 810021 在未开封的原包装中可以贮藏 12 个月。
河源氟橡胶包金属粘接剂性价比高的牌子
又称γ-三氟丙基甲基聚硅氧烷。一般分子链中还引入0.2%~0.4%乙烯基硅氧烷共聚改性。无透明高黏滞塑性直链高分子化合物,主链由硅和氧原子组成,与硅相连的侧基为甲基、乙烯基和三氟丙基,分子量在50~80万之间。配合各种添加剂,可混炼成均相胶料。在有机过氧化物作用下,可硫化成各种弹性橡胶制品。除具有一般的特性外,还有优良的耐航空燃料油、液压油、机油、化学试剂及溶剂等性能。能在-55~+200℃下长期工作。
河源氟橡胶包金属粘接剂性价比高的牌子
丙烯酸酯橡胶,氟橡胶并用操作要点及注意事项
1,丙烯酸酯橡胶(ACM)与氟橡胶(FPM)都是耐热耐油性能的特种橡胶,它们的相容性很好,可以任意比例共混并用.并用胶的性能大体相当于两种胶的加和值,据此可确定所用胶料的并用比例.
2,在氟橡胶中并入些ACM胶有两个好处,可以改善胶料的流动性,还可降低胶料的成本(单位体积的氟胶价约为ACM价的8倍).
3,并用操作可采用两种方式:生胶共混或用各自混炼胶共混.
4,生胶共混的混炼方法与氟胶基本相同,即把氟胶和ACM生胶按并用比例合在一起进行混炼.硫化体系宜采用3号硫化剂,硫化剂只能在胶料要使用前才能加入.加硫化剂时辊温和胶温不可过高(以不太烫手为宜),以防胶料焦烧.
加入硫化剂的胶料应在2天内用完为宜,尽量不要超过3天.
当氟胶需要用过氧化物作硫化剂时,并入的ACM宜选用AR-130型胶,因过氧化物对活性氯型ACM的硫化效果不是太好,并入较多可能会影响胶料的性能.
5,混炼胶共混并用方式是先把氟胶和ACM各自炼成混炼胶存放待用,在使用前按需要的并用比例把两种混炼胶都压成薄片,再均匀的混合在一起,存放一段时间(1-12小时)后返炼一次即可使用.
共混后的胶料*好在1天内用完,*多不要超过3天.过期易焦烧.
6,混炼胶共混并用所用的ACM胶可按下列配方进行配合:
(1),ACM 100
(2),硬脂酸 2
(3),防老剂TK100 3(2-5)
(4),氧化镁 3
(5),模得丽935P(可不加) (1.5)
(6),半补强碳黑 30(20-30)
(7),喷雾碳黑 25(20-40)
(8),硫黄 0.5
(9),3号硫化剂 2(2-3)
(10),防焦剂CTP(可不加) 0.5
混炼时不急用的胶料不能加入硫化剂,与氟橡胶共混前再加入.无硫化剂的混炼胶便于长时间存放.
7,并用胶如果发生焦烧,会在接头部位产生裂口和气泡,焦烧严重时会在胶面出现流痕,或表面粗糙不平,还会影响骨架的粘结.
8,参考资料:ACM/FPM并用胶的性能研究 特种橡胶制品 1995年期
氟橡胶被称为“橡胶王”,是一种含氟高分子弹性体,具有的耐介质功能、耐高温功能、耐酸碱功能和耐高真空功能,但耐低温功能较差,使用受到限制。
若将氟橡胶与氟硅橡胶并用,制备氟橡胶/氟硅橡胶并用胶,功能会发生什么影响呢?
氟硅橡胶是一种侧链含有氟原子的硅橡胶,其主链为硅氧键,分子链柔顺性好,耐低温功能。氟硅橡胶中含有一定量不饱和键,能够选用过氧化物硫化系统进行硫化。
氟橡胶的硫化温度和硫化时刻与氟硅橡胶大致相同,两者能够完成共硫化,因此这两种橡胶并用在理论上具有可行性。
中国器工业集团第五三研究所选取如下材料,进行了试验
氟橡胶,商标PL958
氟硅橡胶,商标AFS-R-1003
硅橡胶,商标110-2
物理功能比照
不同并用比氟橡胶/氟硅橡胶并用胶的物理功能如表2所示
从表2能够看出,当氟橡胶/氟硅橡胶并用比为8/2时,并用胶的物理功能较好,这是由于该并用比下,氟橡胶与氟硅橡胶构成相互涣散较好的结构,而氟硅橡胶的份额相对增大或减小均会使两相相容性变差。
耐介质功能和脆性温度
体积(质量)变化率是试样在介质中处理前后体积(质量)的变化率,其值越小,试样的耐介质功能越好,反之越差。不同并用比氟橡胶/氟硅橡胶并用胶的耐介质功能和脆性温度如表3所示。
从表3能够看出:跟着氟硅橡胶用量增大,并用胶的耐介质功能略有下降,耐低温功能显着提高;普通氟橡胶的脆性温度仅为-20 ℃左右,当氟橡胶/氟硅橡胶并用比为5/5和8/2时,并用胶的脆性温度别离可达
-52和-45 ℃,耐低温功能大幅提高;氟硅橡胶提高并用胶耐低温功能的同时并未使其耐介质功能大幅下降,即便氟橡胶/氟硅橡胶并用比为5/5,并用胶仍具有的耐介质功能。
选取氟橡胶/氟硅橡胶并用比为8/2和5/5的并用胶进行断面微观形状剖析
当氟橡胶/氟硅橡胶并用比为8/2时,并用胶构成了均匀的相态结构,未呈现显着分层,阐明两种胶完成了共硫化,宏观表现出的物理功能;当氟橡胶/氟硅橡胶并用比为5/5时,并用胶呈现显着的中空区域,受力时会发生裂纹使其功能显着下降,这表明两种胶混合均匀,不能构成涣散均匀的结构。
结论:
(1)跟着氟硅橡胶用量增大,并用胶的脆性温度下降,耐低温功能显着提高。
(2)当氟橡胶/氟硅橡胶并用比为8/2时,并用胶的微观结构未呈现显着分层现象,物理功能较好。
氟橡胶的主要成分为氟化聚合物,它是一种由氟乙烯和其他单体聚合而成的合成高分子材料。氟橡胶的主要聚合物有三种:乙烯-氟乙烯共聚物(FKM)、四氟乙烯-异氰酸酯共聚物(FFKM)和乙烯-氟-丙烯三元共聚物(FEPM)。其中,FKM是常用的氟橡胶。它具有出的热稳定性、耐油性和耐化学性,是耐高温、耐腐蚀和抗化学品的材料。
1. 耐高温性能好
氟橡胶具有良好的耐高温性能,一般能够在-20℃~200℃温度范围内使用。在高温下,氟橡胶的弹性模量和硬度不会大幅度变化,且不会软化,熔化或分解,因此在高温环境下多用于密封材料。
2. 耐腐蚀性能
氟橡胶的化学惰性强,表现出良好的抗溶液、抗氧化和抗酸碱等化学性能。它能够耐受酸性和碱性环境,能够抵抗有机和无机化学物质的侵蚀,表现出耐腐蚀的特性。因此,在化工、石油等领域中得到广泛应用。
3. 抗化学品性能
氟橡胶的分子链中引入了氟原子,使其分子链的惰性变得更强。它能够抵抗氧化性和还原性的化学物质,如酸、碱、溶剂等,表现出良好的抗化学品性能。
氟橡胶的主要成分为氟化聚合物,具有出的耐高温、耐腐蚀、抗化学品等特性,为了地发挥氟橡胶的特性,需要根据具体应用需求选择不同种类的氟橡胶材料
4、氯醇橡胶的耐热性
氯醇橡胶的分子链高度饱和,因此其耐热性较好。其耐热性比丁腈橡胶高。在共聚氯醇橡胶(HCO)中,随环氧乙烷含量增加,共聚氯醇橡胶的耐热性降低,在以环氧氯丙烷、环氧乙烷和烯丙基缩水甘油醚三元共聚的氯醇橡胶中,随烯丙基缩水甘抽醚含重增加,共聚胶的耐热性提。
5、丙烯酸酯橡胶的耐热性
丙烯酸酯橡胶是由丙烯酸乙酯或丙烯酸丁酯与少量2-氯乙基乙烯基醚或丙烯腈共聚而制得的橡胶。其耐热性高于丁腈橡胶,低于氟橡胶,长期(1000h)使用温度为170℃,短时间(70h)使用温度可提高到200℃。在热老化过程中,通常以交联反应占优势,使定伸应力和硬度增加,拉伸强度和扯断伸长降低。但是有些丙烯酸酯橡胶热老化时则产生降解。各种类型的丙烯酸酯橡胶,在150℃下老化70h后差US不大。在200℃下则以Hycar401型丙烯酸乙酯橡胶为基础的硫化胶耐热性好。美国Dupont公司研制的乙烯丙烯酸甲酯橡胶(商品名为Varmc)的耐热性仅次于氟橡胶和硅橡胶。
6、氟橡胶的耐热性
氟橡胶是主链或侧链的碳原子上含有氟原子的一类橡胶,它具有的耐高温、耐氧化、耐油和耐化学品性,是现代工业不可缺少的耐高温弹性体材料。氟橡胶的品种很多,少有12种,按化学组成分类如下:
(1)含氟烯烃氟橡胶类
偏氟乙烯与三氟氯乙烯共聚物、偏氟乙烯与六氟丙烯共聚物、偏氟乙烯、四氟乙烯与六氟丙烯三元共聚物、四氟乙烯与丙烯共聚物、偏氟乙烯与五氟丙烯共聚物、偏氟乙烯、四氟乙烯与五氟丙烯三元共聚物
(2)全氟醚橡胶
(3)氟化磷腈橡胶
(4)全氟烷基三嗪橡胶
(5)氟硅橡胶
在氟橡胶中,全氟醚橡胶的耐热性,除全氟三嗪橡胶外,超过其他各种氟橡胶。因为它具有全氟结构,所以耐热性高。全氟醚橡胶在316℃下仍具有工作能力,在260℃空气中数千小时,在288℃下数百小时后仍能保持良好的强伸性能。
7、硅橡胶的耐热性
硅橡胶是橡胶中耐热等级高的一种橡胶,硅橡胶在空气中热老化时,发生交联,其扯断伸长率降低的程度比拉伸强度的降低程度大得多。硅橡胶耐干热空气老化性能,但不耐湿热老化。当空气中或试样中含有过量的水分时,硫化胶会发生强烈的降解。硅橡胶在315℃下老化24h后,硫化胶的强度基本不变, 而当湿度为180g/m2时,试样则被损坏。此外硅橡胶在空气不流通的密闭老化条件下也会发生强烈降解,使性能恶化。硅橡胶的耐热性主要取决于它的分子结构:甲基乙烯基硅橡胶和甲基苯基乙烯基硅橡胶,长期使用的高温度为250℃;而乙基硅橡胶,长期使用的高温度不超过200℃,。随硅橡胶中苯基含量增加,耐热性提高。例如亚苯基硅橡胶、亚苯醚基硅橡胶耐高温达300℃以上。在硅橡胶中,硼硅橡胶的耐热性好。这种硅橡胶可在400℃下长期工作,在420℃到480℃下可连续工作几小时。
8、耐热的丁腈橡胶新品种
氢化丁腈橡胶(HNBR)由于丁腈橡胶具有较好的耐油性和综合性能,所以它一直是耐油橡胶制品是密封制品中用量大的一种橡胶。但是丁腈橡胶属于二烯烃类橡胶,其分子链上的双键多、不饱和度高,因此对热和氧的稳定性差。一般丁腈橡胶的耐热性不高,长期使用温度为100℃;即使用过氧化物硫化的丁腈橡胶,其长期使用温度也只能在120℃,很难达到150℃。而氢化丁腈橡胶的耐热程度可达175℃,优于丁基橡胶和乙丙橡胶,介于丙烯酸酯橡胶和氟橡胶之间。
聚稳丁腈橡胶聚稳丁腈橡胶是丁二烯、丙烯腈与聚合型防老剂通过乳液聚合而制得一种丁腈橡胶。聚合型防老剂在聚合时能进入二烯烃的主链并与其反应成为聚合物分子的一部分。因为防老剂已经与聚合物结合在一起,所以不会因油、溶剂和热的作用而产生抽出、挥发、迁移等防老剂损耗的问题,从而改善了丁腈橡胶的耐热性,延长了使用寿命。由于结合性防老剂的作用,使其具有的耐老化性能,在有些场合可以代替氯醇橡胶和丙烯酸酯橡胶使用。与普通丁腈橡胶相比,更适用于耐老化性强的制品中。
丁腈酯橡胶由丁二烯、丙烯腈和丙烯酸酯在乳液中共聚合而得到的三元共聚物。丁腈酯橡胶具有良好的耐热性,配方、工艺与普通丁腈橡胶相似。可在煤油中于.-60到+160℃范围内长期使用,改善了丁腈橡胶的耐热性和耐寒性。
丁腈橡胶与三元乙丙橡胶共混由于EPDM的不饱和度很低,因而具有良好的耐热老化和臭氧老化性能。为改善含有大量双键的二烯类橡胶———丁腈橡胶的耐老化性能,使其与EPDM共混。但由于两者相容性不好,共硫化性很差,导致硫化胶的力学性能下降。为解决这一问题,人们进行了大量的研究工作,其中用马来酸酐(MA)接枝三元乙丙橡胶,然后再用接枝改性后的三元乙丙橡胶与丁腈橡胶共混,明显地改善了共混物耐热性和其他物理性能。
丁腈橡胶与氟橡胶共混近年来,为了提高丁腈橡胶的耐热性、耐酸性汽油和耐加醇汽油的性能,对丁腈橡胶* 氟橡胶共混进行了试验研究。选用超高丙烯腈含量(丙烯腈含量48)、门尼粘度较高的丁腈橡胶(例如JSR的T404)与门尼粘度较低的氟橡胶(例如VitonB-50)共混,得到的共混物是个丁腈橡胶/氟橡胶的非均相混合体系。为了降低材料成本,应尽可减少氟橡胶的配比,而又能形成氟橡胶连续相。通常可采用在共混物中添加增容剂的方法来解决。研究结果表明,在此共混体系中,使用乙烯基丙烯酸酯弹性体(Wamac)作增容剂可改善丁腈橡胶与氟橡胶的相容性。
耐热橡胶硫化体系
在设计耐热橡胶配方时,硫化体系的选择很重要。不同的硫化体系,形成不同的交联键,从而造成不同的硫化胶网络类型。
(1)—C—C—(过氧化物交联);
(2)单硫键—C—S—C—(低硫+高促+金属氧化物);
(3)二硫键—C—S—S—C—(低硫+高促+金属氧化物);
(4)多硫键—C—Sx—C—(高硫+促进剂+金属氧化物);
(5)多硫键+离子键(高硫+促进剂+金属氧化物)
各种交联键的键能和吸氧速度不同。键能愈大则硫化胶的耐热性愈好,吸氧速度越慢,硫化胶的耐热氧老化性能越好。
在常用的硫化体系中,过氧化物硫化体系的耐热性好。过氧化物在不同类型的橡胶中,脱氢反应中所需要的能量也不同。即使过氧化物自由基所赋予的能量相同,但交联密度也会有所不同。一般说来,硅橡胶、乙丙橡胶、氯磺化聚乙烯橡胶、乙烯—醋酸乙烯酯共聚物(EVA)氯化聚乙烯和聚氨酯橡胶,都可以用过氧化物充分硫化。过氧化物也可使丁腈橡胶达到满意的硫化,但过氧化物硫化天然橡胶、丁苯橡胶和顺丁橡胶时则有问题;而丁基橡胶非但不能用过氧化物硫化,反会被过氧化物所分解。
单独使用过氧化物硫化三元乙丙橡胶时,存在交联密度低、热撕裂强度低、硫化返原等问题。因此用过氧化物硫化三元乙丙橡胶时,要避免单独使用有机过氧化物,好是用某些共交联剂或活性剂并用。例如加入少量硫黄能提高过氧化物硫化胶的力学性能,但其耐热性有所降低。而用其他共交联剂代替硫黄时,其耐热性不降低;这类共交联剂硼双马来酰亚胺、三烯丙基氰尿酸酯、对苯醌二肟、三烯丙基柠檬酸酯、六亚甲基二胺、TMTD等。例如使用对苯醌二肟作为三元乙丙橡胶过氧化物硫化的共交联剂时,只要配合0.2到1质量份,其硫化胶的耐热性就显著提高。
以往氯磺化聚乙烯橡胶用过氧化物硫化比较困难,很难得到交联密度高的硫化胶。如今采用三烯丙基氰尿酸酯或甲基丙烯酸酯或双马来酰亚胺作共交联剂,再并用少量EVA,就可达到有效的交联,制造出耐热性优良的氯磺化聚乙烯硫化胶,其耐热性能比通用硫化体系有明显的提高。从耐热性的角度讲,氯化聚乙烯,采用过氧化物和二烯丙基氰尿酸酯并用的耐热配合后,可以得到比氯磺化聚乙烯(以促进剂硫化)优良的耐热性。
有机硅改性的乙丙橡胶(SEP)用过氧化物硫化时,比促进剂硫化时的耐热性提高
10℃,比未改性的三元乙丙橡胶耐热性提高20℃。
用过氧化物硫化的丁腈橡胶,其耐热性优于有效硫化体系、半有效硫化体系和传统硫化体系。但不如用镉镁硫化体系硫化的丁腈橡胶。因为用过氧化物硫化丁腈橡胶时,虽然硫化胶的耐降解性,但在空气中长时间热老化时会发生交联。而用镉镁硫化体系硫化的丁腈橡胶,不生成热老化时能使橡胶交联的硫化副产物,因此能显著提高丁腈橡胶的耐热性。镉镁硫化体系的组成如下:氧化镉2到5质量份;氧化镁5质量份;二乙基二硫代氨基甲酸镉2.5质量份;促进剂DM 1,质量份。有资料报道,镉镁硫化体系对含稳定剂的特制丁腈橡胶有效。也有文献报道,含促进剂TMTD、DM、二硫代吗啡啉和抗氧剂4020各2份的丁腈橡胶的耐热性,比用过氧化物和镉镁硫化体系还好。
氯化丁基橡胶用硫黄硫化时,耐热性不好。用亚乙基硫脲硫化时,耐热性好,但因其有毒性,所以耐热性氯化丁基橡胶常用氧化锌、促进剂丁TMTD和DM4硫化;也可采用树脂硫化。不同硫化体系对氯化丁基橡胶耐热性的影响见表
丙烯酸酯橡胶可分为氯原子型、环氧基型、羧基型三大类,要根据各个类别来选择耐热的硫化体系。见表:
氯醇橡胶分子结构中没有双键,不能用硫黄或过氧化物硫化体系硫化。其硫化剂使
用金属氧化物或金属盐(氧化锌、氧化铅、碱式碳酸铅、碱式邻苯二酸铅),同时并用促进剂。使用氧化铅+ 亚乙基硫脲硫化体系时,耐热性较好。使用亚磷酸二铅或邻苯二甲酸二铅时,耐热性比氧化铅好。
氟橡胶用二元酚+ 苄基三苯基氯化磷或二元酚佃丁基氢氧化铵硫化时,其耐热性优于多胺交联的氟橡胶。采用过氧化物硫化时,并用共交联剂,如TATM(三烯丙基异氰
脲酸酯),这样可使氟橡胶的耐湿热性能提高。使用双酚A之类的芳香族二醇作为交联剂与季铵盐之类的助剂并用,进行多元醇交联,可以形成醚键,故耐热性优良。
填充体系对耐热的影响
一般无机填料比炭黑有的耐热性,在无机填料中对耐热配合比较适用的有白炭黑、活性氧化锌、氧化镁、氧化铝和硅酸盐。例如:在丁腈橡胶中,炭黑的粒径越小,硫化胶的耐热性越低;白炭黑则可提高其耐热性;氧镁和氧化铝对提高丁腈橡胶的耐热性有一定的效果。具有酸性基团的过氧化物,如过氧化二苯甲酰等,它们对酸性填料是不敏感的,而对那些没有酸性基团的过氧化物,如过氧化二异丙苯等,则有强烈影响,会妨碍硫化反应。酸性填料对烷基过氧化物(二叔丁基过氧化物等)的影响,要比芳香族过氧化物(过氧化二异丙苯等)小。碱性填料对含有酸性基团的过氧化物影响较大,也会使过氧化物分解。炭黑对过氧化苯甲酰的硫化有不良影响。炉法炭黑对过氧化二异丙苯几乎没有影响,而槽法炭黑因呈酸性而妨碍其硫化。
硅系填充剂一般呈酸性、会妨碍过氧化二异丙苯硫化,但对二叔丁基过氧化物没有什么影响。
软化剂对耐热的影响
一般软化剂的分子量较低,在高温下容易挥发或迁移渗出,导致硫化胶硬度增加、伸长率降低。所以耐热橡胶配方中应选用高温下热稳定性好,不易挥发的品种,例如高闪点的石油系油类,分子量大软化点高的聚酯类增塑剂、以及某些低分子量的齐聚物如液体橡胶等。耐热的丁腈橡胶好使用古马隆树脂、苯乙烯—茚树脂、聚酯和液态丁腈橡胶作软化剂。氯磺化聚乙烯橡胶可以采用酯类、芳烃油和氯化石蜡。以氯化石蜡为软化剂时耐热性较好。对于耐热的丁基橡胶,建议使用古马隆树脂的用量不超过5质量份,也可以使用10至20质量份凡士林或石蜡油、矿质橡胶和石油沥青树脂。乙丙橡胶通常采用环烷油和石蜡油作软化剂。