淮安氟橡胶包金属粘合剂厂商
表面处理对粘接效果的关键作用
氟橡胶的低表面能特性使其粘接前必须进行严格表面处理。机械处理包括喷砂(100-200目氧化铝砂)或砂纸打磨,增加表面积和机械嵌合;化学处理常用丙酮或专用清洗剂脱脂,去除脱模剂残留;等离子处理(功率50-100W,时间30-60秒)能引入活性基团,提高表面能至40mN/m以上。对于长期存放的氟橡胶件,还需进行表面氟化层去除处理。实验表明,经优化处理的表面可使粘接强度提升3-5倍,耐久性测试(如热油浸泡后)剥离强度保持率超过90%。
氟橡胶配方,一般是由生胶、吸酸剂、硫化剂、促进剂、补强填充剂、加工助剂等组成。
1.生胶
国产氟橡胶和国外的氟橡胶的性能基本相同,只是加工性能有些差异,国产胶的加工性能较差,主要是门尼粘度较高,相应影响胶料的加工流动性。
国产氟橡胶26相当于美国杜邦公司的 VitonA,氟橡胶246相当于 VitonB, 国外的氟橡胶生胶中有不少已添加了硫化剂,美国3 M公司和日本大金公司供应的氟橡胶已经含有硫化剂。
2.硫化剂
硫化是使氟橡胶产生一定程度的交联,使其具有良好的使用性能。氟橡胶硫化可以采用亲核试剂的离子加成方式进行,也可以以过氧化物或射线以自由基方式进行。
用胺类化合物(1#、3#硫化剂)硫化氟橡胶,可以解 决一般产品的要求;采用2#硫化剂,可以解决胶浆的加工。
在密封制品中,为使其具有较小的压缩变形值,应优先选用酚类化合物作为硫化剂。如对苯二酚、双酚A、双酚AF等,并配用相应的促进剂,以适应高层次的性能要求。
在解决对腐蚀性介质的抗耐性方面,建议采用过氧化物硫化氟橡胶。
3.吸酸剂
吸酸剂也称为稳定剂。它是为了解决氟橡胶加工过程中产生氟化氢对金属的腐蚀和污染,使硫化反应顺利进行。一般采用MgO、CaO、ZnO、PbO、二盐基亚磷酸铅,其用量一般在5~10份。它们的加入各有特点, MgO耐热性好、PbO 耐酸性好;CaO压缩变形小;对消除气泡有利;ZnO和二盐基亚磷酸铅可使胶料流动性得到改善,耐水性好,Ca(OH)₂ 压缩变形小,加入Ca(OH)₂ 和活性MgO,在酚类硫化体系中,可得到低压缩变形的胶料。总之,要选择合适的吸酸剂,以满足实际性能的要求。
4.补强填充剂
氟橡胶是一种自补强性的橡胶。由于性能要求和用途的不同,需要通过补强、填充体系进行调节,使其功能和成本适应用户的需要。 一般用量在10~30 份之间。目前常用的补强填充剂大致上有热裂法炭黑(N-990)、喷雾炭黑、白炭黑、碳酸钙、硫酸钡、氧化钙、碳纤维等。
采用从加拿大的N-990 炭黑或喷雾炭黑,在黑制品中均可取得较好的加工工艺和相应的物理性能。
加入20份碳纤维的氟橡胶,其胶料流动性好,复杂形状产品硫化之后,其 外观优于添加N-990 和喷雾炭黑产品,表面光滑。由于含碳纤维的胶料热导率大,适合高速运动的橡胶件使用。应该指明的是,加入碳纤维的产品成本高,伸长率低。
彩氟橡胶制品可以使用白炭黑、钛白粉、氟化钙、碳酸钙等,并配合相应的颜即可制得相应的胶料。但是,在加工压缩型密封制品时,选用彩原料要注意颜料对高温的抗耐性。此外,还要控制胶料的压缩变形值,使产品适应压缩状态下的工作需要。
5.加工助剂
加工助剂的应用是近年来氟橡胶加工的一大进步,它是在不影响胶料性能发挥的前提下,改善氟橡胶的混炼工艺,焦烧,改进胶料的流动性和压出性能,并能在加工中粘辊、粘模,起到外脱模剂的作用。
在氟橡胶的加工中,已出现过氟蜡、低分子聚乙烯、硬脂酸锌、Ws280、棕榈蜡、模特丽935等新的加工助剂,为氟橡胶的加工和应用提供了新的手段,其 加入量在1~2份。
通过润湿使胶粘剂与被粘物紧密接触,主要是*分子间作用力产生永久的粘接。在粘附力和内聚力中所包含的化学键有四种类型:
(1) 离子键、(2) 共价键、(3) 金属键、(4) 范德华力
3、扩散理论
扩散理论认为,粘接是通过胶粘剂与被粘物界面上分子扩散产生的。当胶粘剂和被粘物都是具有能够运动的长链大分子聚合物时,扩散理论基本是适用的。热塑性塑料的溶剂粘接和热焊接可以认为是分子扩散的结果。
4、静电理论
由于在胶粘剂与被粘物界面上形成双电层而产生了静电引力,即相互分离的阻力。当胶粘剂从被粘物上剥离时有明显的电荷存在,则是对该理论有力的实。
5、弱边界层理论
弱边界层理论认为,当粘接破坏被认为是界面破坏时,实际上往往是内聚破坏或弱边界层破坏。弱边界层来自胶粘剂、被粘物、环境,或三者之间任意组合。如果杂质集中在粘接界面附近,并与被粘物结合不牢,在胶粘剂和被粘物内部都可出现弱边界层。当发生破坏时,尽管多数发生在胶粘剂和被粘物界面,但实际上是弱边界层的破坏。
聚乙烯与金属氧化物的粘接便是弱边界层效应的实例,聚乙烯含有强度低的含氧杂质或低分子物,使其界面存在弱边界层所承受的破坏应力很少。如果采用表面处理方法除去低分子物或含氧杂质,则粘接强度获得很大的提高,事实业已明,界面上确存在弱边界层,致使粘接强度降低。
6、粘接的一般过程
在进行粘接之前,首先要对被粘表面进行适当的处理,然后将准备好的胶粘剂均匀地涂覆在被粘物表面上,接着便是胶粘剂润湿、流变、扩散、渗透、叠合之后,使之紧密接触。当胶粘剂的大分子与被粘物表面的距离小于0.5nm时,则会互相吸引,产生范德华力或形成氢键、配位键、共价键、离子键、金属键等,加上渗入孔隙中的胶粘剂,固化后生成无数的小"胶钩子",从而完成了粘接过程,于是获得了牢固的粘接。
一般来说,粘接过程就是表面处理、涂胶、叠合、固化、后处理等,是一复杂的物理和化学过程。
二、橡胶粘接设计考虑因素
橡胶弹性体包含:天然橡胶和许多合成橡胶。选择弹性体时应考虑零件的性能要求、是否容易混合、加工或硫化。
大部分硫化粘接零件使用:
天然橡胶(NR)
丁苯橡胶(SBR)
氯丁橡胶(CR)
丁腈橡胶(NBR)
其他常用的合成橡胶包括:
丁基橡胶(IIR)
异戊二烯橡胶(IR)
顺丁橡胶 (BR)
氯磺化聚乙烯(CSM)
聚丙烯酸酯(ACM)
乙烯-丙烯酸酯类 (AEM)
各种可浇注聚氨酯(AU或EU)
高性能和超高性能的弹性体于要求耐用性和端工作条件的场景。包括各种氟橡胶(FKM)和硅橡胶(MQ),以及氢化丁腈橡胶(HNBR)。
零件设计师开始在以缓冲为主要功能的组件中使用可熔融加工的弹性体或热塑性弹性体,包括各种聚烯烃(TPO)、苯乙烯-丁二烯嵌段共聚物和热塑性聚氨酯。这些材料不需要硫化,因此并非典型的粘接组件,但易于加工,且产生的废物也可回收利用。用途一般要求在室温下使用。
配方体系的变化对粘接性能的影响
洛德技术服务实验室生成的数据,结合客户的输入,可以提供用于理解配方体系的变化对粘接性能的影响的相关信息。这些配方应用指南主要与非性二烯弹性体有关,如:EPDM、IIR和NR,也涉及一些更易粘接和性更强的类型,如:CR和NBR。
以下配方体系、固化系统、填料、增塑剂和抗降解剂在不同程度上影响“粘接性”。这些成分的效用如下所示:
硫磺含量—配方体系中的硫含量举足轻重:硫含量为1 p.h.r.或以上时,有利于粘接。配方体系含少量硫或无硫则很难粘接。
促进剂--常用促进剂中,MBT通常具备良好的粘接性。ZDMC和超促进剂(如TMTD)会降低粘接性,是在EV或半EV硫化体系中。防焦烧剂(PVI)通常添加到硫化的配方体系中,以提升加工性。但使用超促进剂时:NR配方中如存在高含量的PVI,则不利于粘接。PVI如低于0.15 p.h.r.,则粘接效果较好。
填料--填料的类型和数量是关键。炭黑含量为40至80 p.h.r.的橡胶比炭黑含量较低的橡胶更容易粘接。粘土和白炭黑等非黑填料也有利于粘接。
蜡和油--传递到硫化弹性体表面的蜡质或油质成分会降低粘接性能。包括低分子量聚烯烃助剂(即低熔点聚乙烯和聚丙烯加工助剂/润滑剂)、芳香油和脂肪酸酯(即蓖麻油酸酯)。环烷烃或石蜡油问题比较少。
邻苯二甲酸酯增塑剂--尽管经常推荐邻苯二甲酸二辛酯等增塑剂用于维持聚烯烃弹性体(EPDM和IIR)在低温、终端应用中的机械性能,但并不利于粘接。使用邻苯二甲酸酯会影响NBR材料的粘接性。但加入白炭黑等高表面积的无机填料,可中和邻苯二甲酸酯增塑剂的消影响。
抗臭氧剂 - 高性能的抗臭氧剂和某些抗氧化剂,是对苯二胺类,可能会减弱粘接性。
非二烯类弹性体--未使用硫磺和促进剂固化的弹性体,可加入高表面积的填料提升粘接性。与某些油、增塑剂和蜡混合时,粘接性会降低。
三、橡胶硫化粘接问题
粘接工艺上有很多需要注意的部分,如果出现问题,都需要查:
1、金属基材是不是变化了?
2、金属表面的处理是否出现问题,比如有灰尘、有油?
3、粘接剂是否过期?
4、涂刷在金属表面的粘接剂是否干透了?
5、硫化温度是否合理?
6、橡胶是否发生了变化?
硫化后粘接不好,你要看你涂的胶水是跟着橡胶还是跟着骨架!胶水跟着橡胶走,明你的金属件处理有问题。如果胶水跟着骨架走,明你的硫化工艺存在问题,还有一些问题需要去逐一排查的,是否胶水失效,橡胶是否存在问题,等等。有些问题找不到原因的时候,需要耐心的逐一排查。直到找到为止。
骨架的处理方式:高温除油——喷砂——磷化——烘烤——涂胶——固化
四、胶粘剂相关概念
1、胶黏剂的主要理化性能
操作时间
胶粘剂混合到待粘结件配对之间的大时间间隔
初固化时间
达到可搬卸强度时间,允许处理粘结件的强度,包括从夹具上移动零件
固化时间
胶粘剂混合后得到机械性能需要的时间
贮存期
在一定条件下,胶黏剂仍能保持其操作性能和规定强度的存放时间
粘接强度
在外力作用下,使胶粘件中的胶黏剂与被粘物界面或其邻近处发生破坏所需要的应力
剪切强度
剪切强度是指粘接件破坏时,单位粘接面所能承受的剪切力,其单位用MPa(N/mm2)表示
不均匀扯离强度
接头受到不均匀扯离力作用时所能承受的大载荷,因为载荷多集中于胶层的两个边缘或一个边缘上,固是单位长度而不是单位面积受力,单位是KN/m
拉伸强度
拉伸强度又称均匀扯离强度、正拉强度,是指粘接受力破坏时,单位面积所承受的拉伸力,单位用MPa(N/mm2)表示
剥离强度
剥离强度是在规定的剥离条件下,使粘接件分离时单位宽度所能承受的大载荷,其单位用KN/m表示
2、胶粘剂的常见检测项目
1.物理性能
常规性能:厚度;粘度;耐水性
机械测试:拉伸性能;剥离强度;拉伸剪切强度;压缩剪切强度;水平和垂直持粘性
燃烧性能:水平燃烧;垂直燃烧;灼热丝燃烧
电性能:缘材料表面和体积电阻率;防静电材料表面电阻率;介电强度、击穿电压;耐电压
2.老化测试
紫外老化;氙灯老化;耐温湿老化;盐雾老化 ;老化后外观及性能评价
3.成分分析
主成分定性分析;全成分定性分析;全成分定量分析;灰分含量
4.性
温湿循环;温度冲击;防水防尘;振动测试
3、胶黏剂的现行相关标准
GB 18581-2009室内装饰装修材料溶剂型木器涂料中有害物质限量
GB/T 2791-1995胶黏剂T剥离强度试验方法 挠性材料对挠性材料
GB 18581-2009室内装饰装修材料溶剂型木器涂料中有害物质限量
GB/T 27934.3-2011纸质印刷品覆膜过程控制及检测方法
GB/T 2794-2013胶黏剂黏度的测定 单圆筒旋转黏度计法
GB/T 16585-1996硫化橡胶人工气候老化(荧光紫外灯)试验方法
GB/T 7124-2008胶粘剂剪切强度
ASTM D 1781-1998胶黏剂滚筒剥离试验方
一年一度的橡胶交流盛会即将到来,2024年第十六届橡胶技术交流会定于 6月21日- 23日在常州举行。
会议由橡胶技术网主办,江苏赛捷新材料有限公司协办,以“分享知识,创造价值”为宗旨,邀请国内橡胶企业的专家老师,橡胶同仁前来交流学。
橡胶技术交流会内容实用,会议期间举办橡胶新材料、新设备、新产品发布会,橡胶订单供需对接会,橡胶技术沙龙、篮球友谊赛等活动。
【会议通知】2024年第十六届橡胶技术交流会将在常州举办(6月21-23日)
淮安氟橡胶包金属粘合剂厂商
使用过氧化物为硫化剂,对于硫化部位,需要利用碘或溴,通常采取与含碘或溴的单体共聚,或通过氟烷基碘化物链转移剂将其导入。过氧化物硫化比多醇硫化得到的产品耐油性,因此在三元体系中使用较多。作为硫化助剂,三烯丙基三聚氰酸酯等不饱和多功能团化合物十分必要。另外,若将溴定为硫化部位,则金属氧化物也是的( ZnO 等)。
而使用二胺化合物(六亚甲基二胺的氨基甲酸盐等)作为硫化剂,可以值得高机械强度的橡胶产品。但因其硫化性、稳定性及永久变形较差等问题,该硫化方法使用的不多。作为受氧剂, MgO 为必要成分。
1.3 产品性能及加工成型
FKM 橡胶耐热、耐油、耐燃油性能,但耐寒性还有待提高。该橡胶的性能与含氟量密切先关:含氟量增加,耐油性提高但耐寒性和永久压缩变形性明显降低。有机过氧化物硫化系具有较好的耐久性,且因没有添加碱性物质,耐胺性优良。
根据不同的用途, FKM 常配合不同填充剂和添加剂进行混炼。采用与其他橡胶相同的成型方法,如模具成型、挤出成型等。粘结方法则是在被粘接物上涂上底漆(如要求要耐热性用途时可用硅烷偶联剂) ,再在进行硫化时将氟橡胶粘结在底漆上。
1.4 用途及展望
目前,FKM 的用途主要集中于与汽车部件相关的应用领域,随着汽车性能逐步提高,未来,由耐热耐油性能的氟橡胶代替丙烯酸酯系橡胶及硅橡胶已成为这一领域的趋势。
2 四氟乙烯 / 丙烯系橡胶( TFE-P)
TFE-P 是四氟乙烯与丙烯交替聚合物为基的橡胶, 该材料除具有氟橡胶的性能外, 还兼具高电气缘及耐品性等 FKM 不具备的特性。
2.1 合成方法
TFE-P 系橡胶在工业上采取乳液聚合实施方法, 以过硫酸钾或过硫酸铵为引发剂, 在反应体系达到一定压力时加入原料进行反应。将这样得到的乳液用无机盐凝聚,清洗干燥后得到氟橡胶。合成步骤与 FKM 类似。
2.2 硫化方法
对于 TFE-P 系橡胶而言,二元系橡胶中用过氧化物硫化,三元系橡胶中用过氧化物硫化以及多醇硫化。
过氧化物硫化使用有机过氧化物作为硫化剂使用,与 FKM 不同的是,硫化部位不用溴和碘,因而更适合于医疗食品领域的应用。
三元系橡胶中有 VDF,多醇硫化也是可行的。硫化机理与 FKM 多醇硫化类似,但硫化反应活性稍低(这正是其耐化学品性的原因),因而需要使用的铵盐作为硫化促进剂。
由于二元系橡胶缘性能号,可用于制造电线,因此可以通过电子射线辐射的方法对其进行交联。
2.3 产品性能及加工成型
该橡胶具有的电缘性和耐品性。氟含量低于 FKM 却具有高的分解温度。耐溶剂性优良,溶于四氢呋喃,而在低性溶剂中发生溶胀。对胺系添加剂的高性能引擎油耐久性好,密度较低,催化温度为 -40℃。
TFE-P 系橡胶的成型加工中,混炼、成型、硫化、粘结等采用与其他橡胶相同的方法进行。电线成型时,可将橡胶被覆到芯线上后用有机过氧化物硫化。为了补强,还可将耐热、耐溶剂性好的乙烯 -四氟乙烯共聚物树脂熔融共混后再辐射交联。
2.4 用途及展望
TFE-P 系橡胶由于其的电气性能,主要用于耐热电线,处在其他橡胶取代的位置。另外,随着高性能化引擎油的大规模使用, FKM 将应付其中的胺类添加剂,而耐寒性良好的三元系 TFE-P 橡胶将有望解决此类问题。
3 全氟橡胶
一般的氟橡胶聚合物中含有大量碳氢集团,在化学品腐蚀及其它严苛的条件下容易劣化。四氟乙烯与全氟烷基乙烯醚共聚所得的氟橡胶中氢原子被氟原子取代,因而具有优良的耐热、耐腐蚀性能。
3.1 合成方法
全氟橡胶的制造工业上依然采用乳液聚合方法。得到的产品具有全氟结构,硫化部位也具有与聚合物相同的耐热耐腐蚀性。四氟乙烯-全全氟烷基乙烯醚共聚物中,全氟碳氰化物基团少量聚合进入共聚物作为硫化部位。利用全氟烷基碘化物作为链转移及也可适当引入硫化部位。
3.2 硫化方法
与其它氟橡胶一样,加入填充料、硫化剂、硫化促进剂等混合后硫化。以四苯基锡作为催化剂,硫化过程中氰基形成了三聚体的三嗪环。此法硫化速度慢,难成型。
以碘为硫化部位的硫化方法较全氟氰基硫化法硫化性好, 但有机过氧化物与硫化助剂中的碳氢化合物部分有可能进入聚合物结构。
3.3 产品性能及加工成型
全氟橡胶是合成橡胶中耐溶剂性能好的一种,仅对氟利昂有较小程度的溶胀,但永久压缩变形性较其他橡胶要差得多。其耐热性和耐寒性因工具单体及硫化方法的不同有所差别:如六氟甲基乙烯基醚( PMVE)共聚橡胶耐热性好, Tg 高,耐寒性较差;长链全氟烷基乙烯醚共聚的橡胶耐寒性好但耐热性较 PMVE 差。
全氟橡胶的成型加工基本上可采用与其他氟橡胶相同的方法,但由于其硫化性能差,因而难成型。
3.4 用途及展望
目前,全氟橡胶主要发挥其耐化学腐蚀的特性,作为半导体产业密封材料以及化学、是有化学工厂中的密封材料。该材料应用受到限制的大原因便是材料价格太高,如何在改良其加工成型性能和压缩永久变形是未来重要的课题。
4 氟硅橡胶( FVMQ )
氟硅橡胶主链上有硅氧键,侧链上有三氟烷基,耐热及耐寒性能优良,可使用温度范围宽。
4.1 合成方法
氟硅橡胶是采用本体聚合,用环状硅氧烷开环聚合合成的。碱性催化剂作用下,一般用三氟丙基甲基硅氧烷聚合制得,中和催化剂停止反应。用有机过氧化物硫化,因而可共聚入少量甲基乙烯基硅氧烷作为硫化部位。采用低分子量直链硅氧烷作为链转移剂调节分子量。市售氟硅胶的分子量从数万到数十万范围不等。
4.2 硫化方法
氟硅橡胶的硫化方法有两类:过氧化物硫化和常温固化。
过氧化物硫化时,硫化部位是共聚物中反应活性高的乙烯基(甲基乙烯基硅氧烷中) ,因此硫化速度快,不需要硫化促进剂。
常温固化是基于硅烷醇缩合的硫化形式。锡催化剂作用下,空气中的水分将固化剂水解成硅烷醇,与聚合物末端的硅烷醇缩合达到固化效果。由于反应是从材料表面到深处发展进行的,固化时间较长。
4.3 产品性能
耐热性、耐化学品性、耐油性及机械性能较其他氟橡胶稍差,但其兼具氟与硅两者的优点。耐燃油性优秀,使用温度范围为-60℃~200 ℃,对甲醇溶胀小。
4.4 用途及展望
主要集中在以隔膜及单向阀等与燃料有关的器件为中心应用领域。
5 含氟膦腈橡胶( FPz)
FPz主链含磷与氮的耐寒氟橡胶。
5.1 合成方法
环状二氯代膦腈开环聚合,用氟烷基取代氯原子得到。
5.2 硫化方法
聚合物中导入少量不饱和基用以作为硫化部位,可用过氧化物或放射线硫化。
5.3 用途及展望
含氟膦腈橡胶的使用温度范围为 -60℃~170℃,温度依赖性小,在宽温度范围内能保持良好的稳定性,常用于军事、宇宙、航空产业方面耐燃油的密封材料。
6 热塑性氟弹性体
氟橡胶通常需要用硫化剂及各种助剂加以混炼,成型方法复杂,因此,开发与热塑性氟弹性体十分必要。热塑性弹性体是兼有相交成分软连段和树脂成分硬链段的嵌段共聚物。共聚物中同时含有结晶性的树脂链段和柔软的橡胶链段,冷却时,由于硬段的作用,软段好似被交联起来,因而不需要硫化。
6.1 合成方法
以 Daiel TPE 为例,将作为软段的偏氟乙烯( VDF)的共聚物体系与不同品种的可作为硬段的含氟单体,用碘转移聚合(活性自由基聚合)进行嵌段共聚。
而 Cefral soft 则是先在偏氟乙烯共聚体系主链中引入过氧化基团,再进一步让过氧化基团热分解,从而将单一偏氟乙烯树脂成分接枝到主链上去。
6.2 用途及展望
热塑性弹性体具有硫化橡胶的物理机械性能和软质塑料的工艺加工性能。由于不需再经过热硫化,因而使用简单的塑料加工机械即可制成产品。这一特点使生产流程缩短了 l/4,节约能耗 25%~40%,提率 10~20 倍。热塑性弹性体不仅可以取代部分橡胶,还能使塑料得到改性。