银南地区氟橡胶包尼龙底涂剂价格多少

名称:银南地区氟橡胶包尼龙底涂剂价格多少

供应商:深圳市同泰胶粘有限公司

价格:面议

最小起订量:1/吨

地址:深圳市龙岗区南约村利亨隆工业区A栋

手机:18922858363

联系人:廖鑫 (请说在中科商务网上看到)

产品编号:222969107

更新时间:2025-11-13

发布者IP:125.66.92.73

详细说明
产品参数
品牌:绿新化工
成分:有机硅聚合物、溶剂
外观:透明粘稠液体
环保:ROHS、REACH
类型:氟橡胶热硫化胶水
包装:3KG、20KG
保存方式:常温保存
干燥时间:约3~10分钟
应用范围:工业用
产品优势
产品特点: 底涂剂作为辅助材料,通过提高粘接强度和润湿性,确保涂层或胶水与基材之间形成牢固的结合。它的主要特点体现在其增强粘接力、改善基材表面性能以及适用于多种材料上。
服务特点: 绿新公司创建于2003年,先后分别在深圳和四川两地投入建厂。专业从事环保无毒胶水胶粘剂,处理剂,底涂剂,有机硅助剂的研发、生产及销售的现代科技型企业。公司本着“客户第一,服务第一,品质第一”的原则经营公司。坚持不懈的追求客户满意度为我们带来了巨大的回报,长期稳定的客户源是我们赖以生存的基础!

  银南地区氟橡胶包尼龙底涂剂价格多少

  特殊环境下的应用挑战

  航天领域要求胶水在-55℃至230℃极端温度循环(100次)后仍保持密封性;深海设备需耐受70MPa静水压且防微生物附着;核电站用胶水要抗γ射线辐照(累计剂量>100kGy)。这些场景推动特种配方发展:添加聚酰亚胺纤维可提高高温尺寸稳定性;含氟硅烷的配方能抵抗高压渗透;苯基氟橡胶基胶水具有最优的耐辐照性。此类特种胶水价格可达常规品10倍以上,但能解决关键设备的"卡脖子"密封问题。

  通过实验考察了硫化剂、吸酸剂、填料对耐酸氟橡胶配方性能的影响,包括硫化性能、硬度、拉伸性能和压缩永久形变,研究各组分的佳配比。实验结果表明,氟橡胶硫化剂双酚AF用量在212phr~215phr范围内,其综合性能好;吸酸剂对硫化胶的交联过程及不饱和键生成有明显影响,单独使用Ca(OH)2时,加入量为8phr佳;填料硫酸钡的作用旨在提高硫化胶的耐酸性能,由于其对吸酸剂的屏蔽作用在使用时需相应提高吸酸剂用量。

  氟橡胶由于含有C-F键这一结构而使其具有其他橡胶不可比拟的性能,如的耐高温性能、耐化学品性能和良好的物理力学性能等,因而广泛应用于航空航天,汽车,石油和家用电器领域。

  本文所用氟橡胶是2,6型氟橡胶,即偏氟乙烯-六氟丙烯共聚物。

  由于2,6型氟橡胶的自身结构特点,其配方主要包括硫化体系,吸酸剂,增塑剂和填料。目前对其不同硫化体系以及吸酸剂的研究报道相对较多,大多针对常温力学性能、耐热老化性能、低温性能等,而针对环境下(如酸性环境)氟橡胶的使用稳定性配方研究还比较少。根据对该种氟橡胶稳定性的研究表明,氟橡胶是一种具潜质的燃料电池密封材料。本文目的是研究一种适用于质子膜燃料电池内部酸性环境下使用的氟橡胶密封件的配方,其主要工作是在常见配方基础上进一步调整硫化剂、吸酸剂和填料的种类及用量,旨在改善其耐酸性能、拉伸性能和耐压缩永久形变性能(关于其耐酸性能的研究将在之后进行报道)。

  1、实验部分

  1.1、实验原料

  氟橡胶(FKM):牌号2604,偏氟乙烯-六氟丙烯共聚物,上海三爱富新材料股份有限公司产品;2,2-(4-羟基苯基)六氟丙烷(双酚AF)、苄基三苯基氯化磷(BPP)、氟橡胶超细Ca(OH)2、巴西棕榈蜡:均由上海开帆实业有限公司提供。炭黑N990,硫酸钡:市售。

  1.2、实验配方

  基本配方(质量份)FKM100,Ca(OH)26(变量6、8、10、12、15),双酚AF215(变量210、212、215),BPP015,巴西棕榈蜡1,炭黑20,硫酸钡0(变量0、20)。

  1.3、实验方法

  胶料在双辊开炼机上进行混炼,各组分加入顺序依次为:生胶、巴西棕榈蜡、吸酸剂、填充剂(炭黑、硫酸钡)、硫化体系(双酚AF、BPP),控制辊温不超过60e。将混炼胶在平板硫化机上进行压板硫化,硫化条件为170et90,16MPa,其中t90由硫化曲线测试得到。压板硫化后将硫化胶室温停放24h后进行二次硫化。二次硫化过程在电热鼓风烘箱中完成,硫化条件为230e@10h。除了硫化曲线测试是采用混炼胶,其他测试均在硫化胶二段硫化结束24h以后进行。

  1.4、分析与测试

  1.4.1、硫化曲线测试:采用北京友深电子仪器有限公司的R100E型橡胶硫化仪进行测试,条件为170e@30min。结果记录包括:扭矩(ML),高扭矩(MH),焦烧时间(t10),正硫化时间(t90)。

  1.4.2、硬度测试:采用邵氏硬度计按照ASTM-D2240测试样品的绍尔A硬度。

  1.4.3、压缩永久形变测试:按照ASTM-D395测试样品的压缩永久形变,测试条件选择125e,22h。

  1.4.4、拉伸性能测试:在深圳市新三思材料检测有限公司的SANS微机控制电子万能材料试验机上按照ASTM-D412测试样品的拉伸性能,测试样品为哑铃型样条,拉伸速率为500mm/min,标距为25mm。

  1.4.5、红外衰减全反射测试:采用美国ThermoSc-ientific公司NicoletiS10型傅里叶红外光谱仪进行测试,分辨率为4cm-1,扫描次数为128。测试样品为压板硫化制得的1mm厚度板材,该板材主要用于裁剪成拉伸样品。测试前用酒精擦去表面的灰尘油脂等污染物。

  2、结果与讨论

  2.1、硫化体系的影响

  本文选用了双酚硫化体系(双酚AF和BPP),相较于其他硫化体系有利于提高抗压缩永久形变性能和耐热稳定性。Scheme1为双酚硫化体系的反应机理。

  分析Tab.1中配方1、2、3,三者转矩相差不大,说明改变硫化剂双酚AF的用量不影响未硫化混炼胶的加工性能。高转矩随双酚AF用量增加而增大,正硫化时间相应延长,导期延长,但在双酚AF添加量达到2.5phr时正硫化时间和导期有所下降。根据反应原理,硫化速度主要与BPP的用量有关,而双酚AF主要影响交联程度。硬度变化趋势与硫化程度相符合,即一定程度上交联密度越大,硬度越大。从基本力学性能上来看,断裂伸长率随硫化程度增加而有所下降,配方3相比较配方2的拉伸强度略有下降,这可能是由于交联过密,在拉伸过程中不能充分变形吸收应力而导致应力集中,影响拉伸强度的提高,故不可盲目提高硫化程度。

  由于橡胶的压缩永久形变是由压缩过程中的物理松弛和化学松弛引起的不可恢复形变,其中硫化橡胶的物理松弛多数在百分之几以下,故压缩永久形变主要由化学松弛引起。而化学松弛是受到橡胶交联程度和交联键稳定性的影响。配方3和配方2的压缩永久形变相差不大,明两者的硫化程度接近。配方1由于欠硫导致在压缩过程中不可恢复形变量增加,压缩永久形变增加。

  2.2、吸酸剂的影响

  考虑到酸性使用环境且要求低迁移率,选用Ca(OH)2为吸酸剂。在Ca(OH)2为6phr~15phr的范围内,随着添加量的增加,高扭矩和扭矩均有所增加,导期和正硫化时间缩短,见Fig.1(a)。从反应机理中可知Ca(OH)2在整个硫化过程中既是交联反应活化剂也是吸酸剂,故其对硫化反应的速度和程度都有影响,但其对硫化程度的影响不如硫化剂那么大。

  当Ca(OH)2添加量由10phr变为15phr时,扭矩差(高扭矩与扭矩之差)变化不大,说明橡胶硫化程度十分接近。Ca(OH)2对硬度的影响较明显,硬度随加入量的增加而提高,尤其是加入量超过10phr后。从力学性能上看,见Fig.1(b)和Tab.2,断裂伸长率随Ca(OH)2用量的增加而降低;而拉伸强度是先增加后降低,压缩永久形变则先下降后上升。当Ca(OH)2的添加量达到10phr时,性能开始劣化,具体表现在拉伸强度下降,压缩永久形变增加,说明Ca(OH)2的添加量已达到饱和。

  对红外曲线(Fig.2)进行分析可知,吸酸剂用量的增加在导致交联密度提高的同时带来更多的不饱和基团,如C=C和C=O等会影响后续使用性能的稳定性。硫化后过量不饱和键的存在不利于制品在压缩过程后的形变恢复,从而导致压缩永久形变增加。所以在形成不饱和键作为交联点的基础上,应尽量减少吸酸剂的用量。

  2.3、填料的影响

  炭黑作为常用填料对氟橡胶的交联过程影响不大,主要作用是提高橡胶的硬度和拉伸性能,但不利于降低压缩永久形变,因此在达到拉伸强度的前提下用量应控制在20phr左右。

  硫酸钡作为化学惰性填料,主要用于耐腐蚀,同时可得到较低的压缩永久形变值[1]。本文研究了硫酸钡在不同吸酸剂含量下对氟橡胶性能的影响(见Tab.3)。

  比较Tab.3中的配方9和10,在吸酸剂为Ca(OH)2(10phr)时硫酸钡的加入对拉伸强度及断裂伸长率无明显影响。从硫化曲线数据可知,硫酸钡对氟橡胶硫化程度有一定提高。而当吸酸剂Ca(OH)2的添加量为6phr尚未达到饱和时,比较配方11和12,可以发现硫酸钡严重影响了硫化速度。这是由于硫酸钡的加入会对吸酸剂起到一定屏蔽作用,使吸酸剂相对浓度下降,进而降低硫化反应速度甚至影响反应程度。而硫化程度的下降导致拉伸强度下降,压缩永久形变增大。配方12的硬度大于配方11主要归功于硫酸钡作为填料本身对整体硬度的影响。但当吸酸剂用量增大到10phr时硫酸钡的这种屏蔽影响就不明显了。故在使用硫酸钡作为填料时,应适当增加吸酸剂用量。

  3、结论

  (1)氟橡胶硫化剂双酚AF用量在212hpr~215phr范围内,综合性能好。硫化剂用量过低会导致拉伸强度下降,压缩永久形变增大。

  (2)吸酸剂的含量对氟橡胶硫化程度和不饱和键含量都有明显影响,从而影响硫化胶的硬度、拉伸性能和压缩永久形变性能。加入Ca(OH)2作为吸酸剂时佳添加量为8phr。

  (3)硫酸钡作为填料对硬度和压缩永久形变有一定增加,对拉伸性能影响不大;对吸酸剂有一定屏蔽作用,故同时使用时应适当增加吸酸剂用量。

  银南地区氟橡胶包尼龙底涂剂价格多少

  Huhoco希科SI Coatings热硫化胶粘剂 (德国)

  Huhoco希科SI Coatings热硫化胶粘剂 (德国)

  百年德企HUHOCO GROUP成立于1927年,致力于工业制造、新材料研发等行业,在欧美亚建立20余个研发和生产基地,为制造业客户提供跨行业系统解决方案。

  集团旗下SIC GmbH是欧洲家涂料胶粘剂研发和生产厂家,产品涵盖各类橡胶与金属基材热硫化胶粘剂、塑料与金属基材胶粘剂、塑料与玻璃陶瓷碳纤维基材胶粘剂。公司的产品和技术广泛应用在汽车制造、工业生产、建筑桥梁减震、航空航天、电子制造、过程工业等众多领域。

  SIC GmbH产品,符合欧洲严苛的要求。

  橡胶与金属基材热硫化胶粘剂

  产品名称                涂布方式       使用说明

  SIC 05 底涂/单涂  普通橡胶的底涂,适用于NBR单涂使用

  SIC 16  面涂  通用型面涂,适合大多数橡胶

  SIC 17  面涂

  针对性较高的较难粘接的橡胶如三元乙丙橡胶(EPDM)

  以及 氯 硫化聚乙烯橡胶(CSM)

  以及苯乙烯-丁 二烯橡胶(SBR)等橡胶,

  具有 好的油与溶剂抗性

  SIC 05  底涂/单涂 丁腈橡胶(NBR)和氢化丁腈橡胶(HNBR)的单涂,

  SIC 17 与 SIC 05 的组合适合EPDM的硫化粘接

  SIC 34  单涂 腈化橡胶和氯化橡胶如丙烯酸橡胶(AEM),

  氯丁橡胶(CR),氯醇橡胶(ECO)

  以及某些天然橡胶(NR)粘接金属基材的

  的低温硫化型

  SIC 15  面涂 针对大多数橡胶低温硫化型面涂,

  适用于80-90度的硫化条件

  SIC 01  底涂/单涂 抗温性底涂,亦可作为丁腈橡胶(NBR)

  和氢化丁腈橡胶(HNBR)的单涂

  SIC 22  单涂 针对氟橡胶

  SIC 28  单涂  针对硅橡胶

  SIC 29  单涂  针对氟硅橡胶

  SIC 18  单涂

  天然橡胶(NR),异戊二烯橡胶(IR),丁二烯橡胶(BR),

  苯乙烯 -丁 二烯橡胶(SBR),氯乙烯橡胶( CR),

  丙烯晴-丁二烯橡胶(NBR),异丁烷-异戊二橡胶 烯(IIR)

  和 氯 硫化聚乙烯橡胶(CSM) 等橡胶

  SIC  116613  单涂

  针对性较高的较难粘接的橡胶如三元乙丙橡胶(EPDM)、

  氯 硫化聚乙烯橡胶(CSM)以及

  苯乙烯-丁 二烯橡胶(SBR)等橡胶

  与金属和很多塑料 基材的粘接涂层。

  塑料与金属基材胶粘剂

  产品名称           涂布方式          使用说明

  SIG 2169  单涂  针对各种聚氯乙烯(PVC)

  SIC 3192  单涂  针对聚丙烯(PP)射出成形等工艺

  SIC 3161 单涂 针对热塑性聚氨酯(TPU)和聚氨酯(PU)树脂、CPU

  SIC 78 底涂

  可配合 SIC 2169、3192、

  3161使用的底涂,

  在对防腐有要求的情况下使用

  SIC 3125  单涂

  针对聚酰胺(PA)及其玻璃纤维加强树脂(PA+GF),

  也可用于聚丙烯玻璃纤维加强树脂 (PP+GF)、

  聚對苯二甲酸丁二酯 (PBT)以及

  丙烯腈-丁二烯-苯乙烯共聚物玻璃纤维加强树脂(ABS+GF)

  SIC  75  底涂  配合SIC 3125使用的底涂,

  尤其在基材对防腐要求较高时推荐使用

  SIC 3599  面涂  针对丙烯腈-丁二烯-苯乙烯共聚物 (ABS)

  SIC 80 底涂 配合 SIC 3599使用的底涂,

  与金属基材有强的附着力,并且起到防腐的效果。

  银南地区氟橡胶包尼龙底涂剂价格多少

  英国西邦45热硫化单涂粘合剂金属非金属天然胶氢化丁晴三元乙丙

  Cilbond® 24符合原材料资料系统(IMDS)要求,不含铅,性溶剂。是一种高性能的胶粘剂,用于各种橡胶与金属、塑料及其他硬质基材之间的热硫化粘接。.

  概   述

  CILBOND®24C是一种高性能的单涂型胶粘剂,用于各种橡胶与金属及其他硬质基材之间的热硫化粘接。还可用于已硫化的橡胶的粘接;以及橡胶与纤维线绳,织物如纤维素,聚酰胺,聚酯及玻璃之间的粘接。

  CILBOND®24C具有以下特性:

  1.高性能胶粘剂,广泛粘接以下橡胶:

  天然橡胶(NR)、氯醇橡胶(ECO)、丁苯橡胶(SBR)、氯磺化聚乙烯(CSM)、氯丁橡胶(CR)

  丙烯酸酯橡胶(ACM)、顺丁橡胶(BR)、羧基化丁腈橡胶(XNBR)、异戊橡胶(IR)等。

  2.技术特性

  的耐预固化性能,可在160oC烘烤30分钟,不影响粘接性能。

  几乎无模具污染. 注射工艺时,温度甚至可以超过200oC.

  的耐热性能 – 粘接件可耐受200oC

  的耐低温性能 – 可耐受 -50oC

  耐盐雾试验,无负重时,可耐受超过1000小时;负重时,可耐受超过400小时,无腐蚀现象。

  的动态及静态耐疲劳性能。

  的耐化学性能: 溶剂汽油,无铅汽油,煤油,燃油,矿物油及合成油。高温下的酯化涡轮油,高温下的乙二醇及丙二醇, 酸碱, 热水包括沸水。

  金属表面处理

  对于单涂胶粘剂,金属的表面处理尤其重要,避免各种污染物残留,这些污染物会对粘接造成大影响,导致脱胶。喷砂是常用的表面处理方法,选用200-400微米粒径的石英砂或氧化铝。铁质类的金属,喷砂至灰白可获得理想效果, 然后进行溶剂脱脂处理。其他表面处理方法还有磷化及铬化处理,酸碱处理,以及化学试剂处理。化学处理很重要的是在溶液中的停留时间,溶液浓度,温度控制。以及清洗液要及时更换避免清洗不。

  硫化方式

  CILBOND®24C可适用于各种模压硫化方式,包括模压,转移,注射,挤出等硫化方式。硫化温度范围:120oC -230oC。正确使用CILBOND®24C可大降低产品报废率。并具有的耐预固化性能:160oC时,10分钟,不影响性能,甚至可至160oC,30分钟。干膜在转移模或注射工艺时,不会被冲刷脱落,也不会造成模具污染。

  耐环境性能

  CILBOND®24C中聚合物体系的化学结构使其拥有的耐高温及耐化学品的性能。应用在汽车零部件上,单涂CILBOND®24C把天然橡胶与碳钢粘接在一起,在负荷2kg/25mm情况下,放在沸水中100小时,粘接脱胶出现,甚至优于对手的双涂体系;在盐雾试验中,控制干膜厚度为20微米或以上时,无负荷时,可超过1000小时,负荷情况下,可至400小时,腐蚀发生,同等条件下,优于对手的单涂及双涂体系。

  CILBOND®24C具有的耐乙二醇和丙二醇性能:160oC下,粘接件可耐受1000小时,甚至更长时间,而不会出现粘接破坏的现象。单涂使用CILBOND®24C效果佳,使用面涂,反而会降低其耐受性能。

  CILBOND®24C具有的耐受合成酯化涡轮油性能:粘接件在130oC下,可达到1000小时,不会出现脱胶。

  CILBOND®24C的耐高温性能:可耐受200oC,而不会变脆或与金属脱胶。适用于Vamac® 胶料,其工作温度可达到200oC.

  CILBOND®24C能解决疑难的粘接问题

  由于CILBOND®24的高性能,可解决以下粘接问题:

  对于不锈钢及镀镍材料的优良粘接性能

  注:在未经喷砂处理的,光滑的不锈钢表面,涂胶后,需在25oC下干燥2小时,或者于85-95oC下,强制干燥2-5分钟。

  对于镀黄锌铬的金属件,CILBOND®24C显示的粘接性能。

  CILBOND®24C用于后硫化的粘接件,暴露在盐水环境中,表现出良好的耐受性能。

  用CILBOND®24C粘接氯醇橡胶或杜邦的丙烯酸酯橡胶,具有的耐热性能。

  CILBOND®24C在液压支座产品中,表现出的耐乙二醇性能。

  在后硫化粘接时,CILBOND®24C能粘接前述的各种橡胶包括氢化丁腈橡胶,甚至氟橡胶。但对不同橡胶及其配方,进行粘接试验。

  典型物理性能

  外观:                            黑

  粘度 (Brookfield LV 3,26oC):   10,000 cps

  固含量(重量):                    25%

  比重:                            0.97

  闪点 (Abel Pensky):              -3oC

  闪点 (Seta Flash):               -5oC

  建议干膜厚度:                    不小于12.5 微米

  粘接温度范围:                   120-230oC

  保质期:                         12 月(生产日期起)

  破坏实验时间:                 硫化后24小时,或好3至7天后再测试

  包装规格

  CILBOND®24C有三种包装:10升、25升和200升

  应用范围:

  汽车减震橡胶,铁路机车减震,橡胶减震器,橡胶履带,胶辊,桥梁支座(承),橡胶护弦,疏浚管道,止水带,实心胎,阀门,防腐衬里等制品及NR,CSM,ACM,CR,SBR,BR,ECO.EVA等橡胶的单涂粘合剂。

  英国西邦Cilbond橡胶热硫化胶粘剂/瑞典LUBKO氟素半永久脱模剂

  引言

  氟橡胶中含有氟原子,氟原子与碳原子组成的C-F键性能很高,同时氟原子有大的吸附效应,有赖于这种的分子结构,使得氟橡胶具有的耐热性、耐品性、耐溶剂性、耐氟化性、耐真空性、耐油性、耐老化等多种性能。氟橡胶早应用于航空领域,但应用广泛的是在汽车领域,占应用总量的60% ~ 70%。因此,从实际应用的角度出发,确保选择合适的氟橡胶是十分重要的。

  1 分类[1-2]

  FKM(美国)及FPM(欧洲)均为偏氟乙烯系氟橡胶的缩写,只因地域不同而有所差异,1956年首先由杜邦公司生产,商标为VITON。因为杜邦的度过高,很多人认为VITON就是FKM,但其实不然。氟橡胶的种类很多,性能也不尽相同。根据化学组成的不同,氟橡胶可大体上分为氟碳橡胶、氟硅橡胶、氟化磷腈橡胶。目前,比较常见的氟橡胶为以下几类:

  1)氟橡胶23,国内俗称1号胶,为偏氟乙烯和三氟氯乙烯共聚物;

  2)氟橡胶26,国内俗称2号胶,杜邦牌号VITON A,为偏氟乙烯和六氟丙烯共聚物,综合性能优于氟橡胶23;

  3)氟橡胶246,国内俗称3号胶,杜邦牌号VITON B,为偏氟乙烯、四氟乙烯、六氟丙烯三元共聚物,氟含量高于氟橡胶26,耐溶剂性能较好;

  4)氟橡胶TP,国内俗称四丙氟橡胶FEPM,旭硝子牌号Aflas,为四氟乙烯和碳氢丙烯共聚物,耐水蒸气和耐碱性能;

  5)偏氟醚橡胶,杜邦牌号VITON GLT,为偏氟乙烯、四氟乙烯、全氟甲基乙烯基醚、硫化点单体四元共聚物,低温性能;

  6)全氟醚橡胶,简称FFKM,杜邦牌号Kalrez,低温性能,氟含量高,耐溶剂性能;

  7)氟硅橡胶,低温性能,具有一定的耐溶剂性能。

  2 性能分析与对比

  2.1 机理分析

  氟元素是已知的化学元素中电负性强的元素,C-F键能很高,如表1所示。氟原子半径很小,相当于C-C键长的一半,这使得氟原子能紧密的排列在碳原子的周围,形成了C-C键的保护屏障,这赋予了含氟高分子弹性体C-C键的化学惰性。

  另外,由于氟原子的存在,在其强吸电子效应和对C-C键屏蔽保护作用下,使C-C键的键长缩短,键能增加。不仅如此,氟化了的碳原子与其他原子结合的键能也相应的有所提高,从而提高了含氟高分子弹性体的耐热性和耐腐蚀性,如表2。同时,氟原子也使含氟化合物化学键的自由旋转能大为增加,使氟碳弹性体分子的刚性增强,柔性和耐低温性能有所下降,如表3[3-4]。

  2.2 试验结果对比

  通过大量的对比试验,我们发现氟橡胶与其他类别相比,性能十分(见图1-4及表4)[3-4]。它的气体透过性较低,适用于高真空装置、隔断外界气体的用途;力学性能较好,但常温下弹性较差,其伸长率一般为150%~300%,撕裂强度20~40KN/n,拉伸强度10~25MPa;耐高温性能较好,氟橡胶26可在200~ 250℃范围内长期工作,或在300℃下短期工作,但耐低温性能一般,能保持弹性的限温度范围为-15~20℃。

  从氟橡胶的生产工艺来看,它的配方一般包括生胶、硫化剂(交联剂)、催化剂、补强剂和助剂等几个方面。在满足所需交联度的条件下,硫化剂应尽量少用,虽然增加补强剂对机械强度的提高和电性能有利,但用量也不宜过多,否则对耐热性有很大影响。因此,生产工艺中氟含量、分子量、分子量分布、硫化剂浓度等系数的差异往往也是造成氟橡胶间特性差异的主要原因,如表5-9及图6所示[5-6]。

  3 四丙氟橡胶FEPM、全氟醚橡胶FFKM与偏氟乙烯系氟橡胶FKM[7-8]

  3.1 FEPM与FKM

  FEPM与一般的FKM有很大区别,由于其不同的分子结构,它对碱、胺具有的耐久性能。同时具有耐热性以及电气缘性,由于耐蒸汽性较好,所以可用于其他FKM无法使用的用途中。具有偏氟乙烯单体的FKM对碱的耐久性相对较弱,相反,对汽油性的耐久性和低温柔软性都较好,图7是FEPM与FKM(二元系、三元系)的比较,我们由此也可以看出它们具有不同的特性,即使同属于氟橡胶,所擅长的领域也不同,因此,根据性能要求,需分开使用。

  B Aflas(100系列)与FKM(二元系)的性能差异

  3.2 FFKM与FKM

  FFKM主要由四氟乙烯、全氟烷基乙烯基醚为主要单体,并与少量带硫化点的第三单体共聚而成。具有对高温及化学品及其稳定的结构,可抵抗1600多种化学品的腐蚀,其性有助于保持密封的完整性和性。这种突出的实用价值使它在工业上具有各种各样的应用。它的开发和应用代表了氟橡胶发展的高点。图8和表10是FFKM与FKM的比较,对比发现由于主链的四氟乙烯被氟化,性能发生了质的飞越。图9则是Kalrez常用牌号类型,可满足各种苛刻工况的要求。

  图8 FFKM与FKM的比较

  4 展望

  氟橡胶因其的性能,已经得到了越来越广泛的应用,很好地解决了苛刻条件下的密封问题。随着人们对氟橡胶制造工艺的不断改进和应用的深入研究,未来,这一综合性能佳的密封材料势必在更多的领域得到推广应用。

  参考文献

  [1] 张在利,曾子敏,李嘉.氟橡胶性能、应用及我国氟橡胶工业发展现状[J].化工新型材料.2003,31(2):9-12.

  [2] 刘岭梅.氟橡胶的性能及应用概述[J].有机氟工业.2001, (2):5- 7.

  [3] SH Lee, SS Yoo, DE Kim, BS Kang, HE Kim. Accelerated wear test of FKM elastomer for life prediction of seals[J]. Polymer Testing,2012,31(8):993-1000.

  [4] JH Guo, XR Zeng, Li Hong-Qiang, QK Luo. Effect of fumed silica on properties of FKM/MVQ Blends[J]. Synthetic Materials Aging & Application, 2009.

  [5] 曹鸿璋,刘杰民,张玉玺.氟橡胶改性技术研究进展[J].橡胶工业.2014,61(3):187- 191.

  [6] 蔡树铭.氟橡胶的性能和加工要点[J].化工新型材料.1998, (12):14-16.

  [7] 唐毅.全氟橡胶的性能及其应用[J].化工新型材料.2004,32(11):60-63.

  [8] DL Hertz. Evaluating thermal stability of fluoroelastomers via strain energy density[J]. Sealing Technology, 2005(9):5-9.

  作者不详 转载于 橡胶技术李秀权工作室公众号

  在密封制品中,为使其具有较小的压缩变形值,应优先选用酚类化合物作为硫化剂。如对苯二酚、双酚A、双酚AF等,并配用相应的促进剂,以适应高层次的性能要求。

  在解决对腐蚀性介质的抗耐性方面,建议采用过氧化物硫化氟橡胶。

  3.吸酸剂

  吸酸剂也称为稳定剂。它是为了解决氟橡胶加工过程中产生氟化氢对金属的腐蚀和污染,使硫化反应顺利进行。一般采用MgO、CaO、ZnO、PbO、二盐基亚磷酸铅,其用量一般在5~10份。它们的加入各有特点, MgO耐热性好、PbO 耐酸性好;CaO压缩变形小;对消除气泡有利;ZnO和二盐基亚磷酸铅可使胶料流动性得到改善,耐水性好,Ca(OH)₂ 压缩变形小,加入Ca(OH)₂ 和活性MgO,在酚类硫化体系中,可得到低压缩变形的胶料。总之,要选择合适的吸酸剂,以满足实际性能的要求。

  4.补强填充剂

  氟橡胶是一种自补强性的橡胶。由于性能要求和用途的不同,需要通过补强、填充体系进行调节,使其功能和成本适应用户的需要。 一般用量在10~30 份之间。目前常用的补强填充剂大致上有热裂法炭黑(N-990)、喷雾炭黑、白炭黑、碳酸钙、硫酸钡、氧化钙、碳纤维等。

  采用从加拿大的N-990 炭黑或喷雾炭黑,在黑制品中均可取得较好的加工工艺和相应的物理性能。

  加入20份碳纤维的氟橡胶,其胶料流动性好,复杂形状产品硫化之后,其 外观优于添加N-990 和喷雾炭黑产品,表面光滑。由于含碳纤维的胶料热导率大,适合高速运动的橡胶件使用。应该指明的是,加入碳纤维的产品成本高,伸长率低。

  彩氟橡胶制品可以使用白炭黑、钛白粉、氟化钙、碳酸钙等,并配合相应的颜即可制得相应的胶料。但是,在加工压缩型密封制品时,选用彩原料要注意颜料对高温的抗耐性。此外,还要控制胶料的压缩变形值,使产品适应压缩状态下的工作需要。

  5.加工助剂

  加工助剂的应用是近年来氟橡胶加工的一大进步,它是在不影响胶料性能发挥的前提下,改善氟橡胶的混炼工艺,焦烧,改进胶料的流动性和压出性能,并能在加工中粘辊、粘模,起到外脱模剂的作用。

  在氟橡胶的加工中,已出现过氟蜡、低分子聚乙烯、硬脂酸锌、Ws280、棕榈蜡、模特丽935等新的加工助剂,为氟橡胶的加工和应用提供了新的手段,其 加入量在1~2份。

  4、氯醇橡胶的耐热性

  氯醇橡胶的分子链高度饱和,因此其耐热性较好。其耐热性比丁腈橡胶高。在共聚氯醇橡胶(HCO)中,随环氧乙烷含量增加,共聚氯醇橡胶的耐热性降低,在以环氧氯丙烷、环氧乙烷和烯丙基缩水甘油醚三元共聚的氯醇橡胶中,随烯丙基缩水甘抽醚含重增加,共聚胶的耐热性提。

  5、丙烯酸酯橡胶的耐热性

  丙烯酸酯橡胶是由丙烯酸乙酯或丙烯酸丁酯与少量2-氯乙基乙烯基醚或丙烯腈共聚而制得的橡胶。其耐热性高于丁腈橡胶,低于氟橡胶,长期(1000h)使用温度为170℃,短时间(70h)使用温度可提高到200℃。在热老化过程中,通常以交联反应占优势,使定伸应力和硬度增加,拉伸强度和扯断伸长降低。但是有些丙烯酸酯橡胶热老化时则产生降解。各种类型的丙烯酸酯橡胶,在150℃下老化70h后差US不大。在200℃下则以Hycar401型丙烯酸乙酯橡胶为基础的硫化胶耐热性好。美国Dupont公司研制的乙烯丙烯酸甲酯橡胶(商品名为Varmc)的耐热性仅次于氟橡胶和硅橡胶。

  6、氟橡胶的耐热性

  氟橡胶是主链或侧链的碳原子上含有氟原子的一类橡胶,它具有的耐高温、耐氧化、耐油和耐化学品性,是现代工业不可缺少的耐高温弹性体材料。氟橡胶的品种很多,少有12种,按化学组成分类如下:

  (1)含氟烯烃氟橡胶类

  偏氟乙烯与三氟氯乙烯共聚物、偏氟乙烯与六氟丙烯共聚物、偏氟乙烯、四氟乙烯与六氟丙烯三元共聚物、四氟乙烯与丙烯共聚物、偏氟乙烯与五氟丙烯共聚物、偏氟乙烯、四氟乙烯与五氟丙烯三元共聚物

  (2)全氟醚橡胶

  (3)氟化磷腈橡胶

  (4)全氟烷基三嗪橡胶

  (5)氟硅橡胶

  在氟橡胶中,全氟醚橡胶的耐热性,除全氟三嗪橡胶外,超过其他各种氟橡胶。因为它具有全氟结构,所以耐热性高。全氟醚橡胶在316℃下仍具有工作能力,在260℃空气中数千小时,在288℃下数百小时后仍能保持良好的强伸性能。

  7、硅橡胶的耐热性

  硅橡胶是橡胶中耐热等级高的一种橡胶,硅橡胶在空气中热老化时,发生交联,其扯断伸长率降低的程度比拉伸强度的降低程度大得多。硅橡胶耐干热空气老化性能,但不耐湿热老化。当空气中或试样中含有过量的水分时,硫化胶会发生强烈的降解。硅橡胶在315℃下老化24h后,硫化胶的强度基本不变, 而当湿度为180g/m2时,试样则被损坏。此外硅橡胶在空气不流通的密闭老化条件下也会发生强烈降解,使性能恶化。硅橡胶的耐热性主要取决于它的分子结构:甲基乙烯基硅橡胶和甲基苯基乙烯基硅橡胶,长期使用的高温度为250℃;而乙基硅橡胶,长期使用的高温度不超过200℃,。随硅橡胶中苯基含量增加,耐热性提高。例如亚苯基硅橡胶、亚苯醚基硅橡胶耐高温达300℃以上。在硅橡胶中,硼硅橡胶的耐热性好。这种硅橡胶可在400℃下长期工作,在420℃到480℃下可连续工作几小时。

  8、耐热的丁腈橡胶新品种

  氢化丁腈橡胶(HNBR)由于丁腈橡胶具有较好的耐油性和综合性能,所以它一直是耐油橡胶制品是密封制品中用量大的一种橡胶。但是丁腈橡胶属于二烯烃类橡胶,其分子链上的双键多、不饱和度高,因此对热和氧的稳定性差。一般丁腈橡胶的耐热性不高,长期使用温度为100℃;即使用过氧化物硫化的丁腈橡胶,其长期使用温度也只能在120℃,很难达到150℃。而氢化丁腈橡胶的耐热程度可达175℃,优于丁基橡胶和乙丙橡胶,介于丙烯酸酯橡胶和氟橡胶之间。

  聚稳丁腈橡胶聚稳丁腈橡胶是丁二烯、丙烯腈与聚合型防老剂通过乳液聚合而制得一种丁腈橡胶。聚合型防老剂在聚合时能进入二烯烃的主链并与其反应成为聚合物分子的一部分。因为防老剂已经与聚合物结合在一起,所以不会因油、溶剂和热的作用而产生抽出、挥发、迁移等防老剂损耗的问题,从而改善了丁腈橡胶的耐热性,延长了使用寿命。由于结合性防老剂的作用,使其具有的耐老化性能,在有些场合可以代替氯醇橡胶和丙烯酸酯橡胶使用。与普通丁腈橡胶相比,更适用于耐老化性强的制品中。

  丁腈酯橡胶由丁二烯、丙烯腈和丙烯酸酯在乳液中共聚合而得到的三元共聚物。丁腈酯橡胶具有良好的耐热性,配方、工艺与普通丁腈橡胶相似。可在煤油中于.-60到+160℃范围内长期使用,改善了丁腈橡胶的耐热性和耐寒性。

  丁腈橡胶与三元乙丙橡胶共混由于EPDM的不饱和度很低,因而具有良好的耐热老化和臭氧老化性能。为改善含有大量双键的二烯类橡胶———丁腈橡胶的耐老化性能,使其与EPDM共混。但由于两者相容性不好,共硫化性很差,导致硫化胶的力学性能下降。为解决这一问题,人们进行了大量的研究工作,其中用马来酸酐(MA)接枝三元乙丙橡胶,然后再用接枝改性后的三元乙丙橡胶与丁腈橡胶共混,明显地改善了共混物耐热性和其他物理性能。

  丁腈橡胶与氟橡胶共混近年来,为了提高丁腈橡胶的耐热性、耐酸性汽油和耐加醇汽油的性能,对丁腈橡胶* 氟橡胶共混进行了试验研究。选用超高丙烯腈含量(丙烯腈含量48)、门尼粘度较高的丁腈橡胶(例如JSR的T404)与门尼粘度较低的氟橡胶(例如VitonB-50)共混,得到的共混物是个丁腈橡胶/氟橡胶的非均相混合体系。为了降低材料成本,应尽可减少氟橡胶的配比,而又能形成氟橡胶连续相。通常可采用在共混物中添加增容剂的方法来解决。研究结果表明,在此共混体系中,使用乙烯基丙烯酸酯弹性体(Wamac)作增容剂可改善丁腈橡胶与氟橡胶的相容性。

  耐热橡胶硫化体系

  在设计耐热橡胶配方时,硫化体系的选择很重要。不同的硫化体系,形成不同的交联键,从而造成不同的硫化胶网络类型。

  (1)—C—C—(过氧化物交联);

  (2)单硫键—C—S—C—(低硫+高促+金属氧化物);

  (3)二硫键—C—S—S—C—(低硫+高促+金属氧化物);

  (4)多硫键—C—Sx—C—(高硫+促进剂+金属氧化物);

  (5)多硫键+离子键(高硫+促进剂+金属氧化物)

  各种交联键的键能和吸氧速度不同。键能愈大则硫化胶的耐热性愈好,吸氧速度越慢,硫化胶的耐热氧老化性能越好。

  在常用的硫化体系中,过氧化物硫化体系的耐热性好。过氧化物在不同类型的橡胶中,脱氢反应中所需要的能量也不同。即使过氧化物自由基所赋予的能量相同,但交联密度也会有所不同。一般说来,硅橡胶、乙丙橡胶、氯磺化聚乙烯橡胶、乙烯—醋酸乙烯酯共聚物(EVA)氯化聚乙烯和聚氨酯橡胶,都可以用过氧化物充分硫化。过氧化物也可使丁腈橡胶达到满意的硫化,但过氧化物硫化天然橡胶、丁苯橡胶和顺丁橡胶时则有问题;而丁基橡胶非但不能用过氧化物硫化,反会被过氧化物所分解。

  单独使用过氧化物硫化三元乙丙橡胶时,存在交联密度低、热撕裂强度低、硫化返原等问题。因此用过氧化物硫化三元乙丙橡胶时,要避免单独使用有机过氧化物,好是用某些共交联剂或活性剂并用。例如加入少量硫黄能提高过氧化物硫化胶的力学性能,但其耐热性有所降低。而用其他共交联剂代替硫黄时,其耐热性不降低;这类共交联剂硼双马来酰亚胺、三烯丙基氰尿酸酯、对苯醌二肟、三烯丙基柠檬酸酯、六亚甲基二胺、TMTD等。例如使用对苯醌二肟作为三元乙丙橡胶过氧化物硫化的共交联剂时,只要配合0.2到1质量份,其硫化胶的耐热性就显著提高。

  以往氯磺化聚乙烯橡胶用过氧化物硫化比较困难,很难得到交联密度高的硫化胶。如今采用三烯丙基氰尿酸酯或甲基丙烯酸酯或双马来酰亚胺作共交联剂,再并用少量EVA,就可达到有效的交联,制造出耐热性优良的氯磺化聚乙烯硫化胶,其耐热性能比通用硫化体系有明显的提高。从耐热性的角度讲,氯化聚乙烯,采用过氧化物和二烯丙基氰尿酸酯并用的耐热配合后,可以得到比氯磺化聚乙烯(以促进剂硫化)优良的耐热性。

  有机硅改性的乙丙橡胶(SEP)用过氧化物硫化时,比促进剂硫化时的耐热性提高

  10℃,比未改性的三元乙丙橡胶耐热性提高20℃。

  用过氧化物硫化的丁腈橡胶,其耐热性优于有效硫化体系、半有效硫化体系和传统硫化体系。但不如用镉镁硫化体系硫化的丁腈橡胶。因为用过氧化物硫化丁腈橡胶时,虽然硫化胶的耐降解性,但在空气中长时间热老化时会发生交联。而用镉镁硫化体系硫化的丁腈橡胶,不生成热老化时能使橡胶交联的硫化副产物,因此能显著提高丁腈橡胶的耐热性。镉镁硫化体系的组成如下:氧化镉2到5质量份;氧化镁5质量份;二乙基二硫代氨基甲酸镉2.5质量份;促进剂DM 1,质量份。有资料报道,镉镁硫化体系对含稳定剂的特制丁腈橡胶有效。也有文献报道,含促进剂TMTD、DM、二硫代吗啡啉和抗氧剂4020各2份的丁腈橡胶的耐热性,比用过氧化物和镉镁硫化体系还好。

  氯化丁基橡胶用硫黄硫化时,耐热性不好。用亚乙基硫脲硫化时,耐热性好,但因其有毒性,所以耐热性氯化丁基橡胶常用氧化锌、促进剂丁TMTD和DM4硫化;也可采用树脂硫化。不同硫化体系对氯化丁基橡胶耐热性的影响见表

  丙烯酸酯橡胶可分为氯原子型、环氧基型、羧基型三大类,要根据各个类别来选择耐热的硫化体系。见表:

  氯醇橡胶分子结构中没有双键,不能用硫黄或过氧化物硫化体系硫化。其硫化剂使

  用金属氧化物或金属盐(氧化锌、氧化铅、碱式碳酸铅、碱式邻苯二酸铅),同时并用促进剂。使用氧化铅+ 亚乙基硫脲硫化体系时,耐热性较好。使用亚磷酸二铅或邻苯二甲酸二铅时,耐热性比氧化铅好。

  氟橡胶用二元酚+ 苄基三苯基氯化磷或二元酚佃丁基氢氧化铵硫化时,其耐热性优于多胺交联的氟橡胶。采用过氧化物硫化时,并用共交联剂,如TATM(三烯丙基异氰

  脲酸酯),这样可使氟橡胶的耐湿热性能提高。使用双酚A之类的芳香族二醇作为交联剂与季铵盐之类的助剂并用,进行多元醇交联,可以形成醚键,故耐热性优良。

  填充体系对耐热的影响

  一般无机填料比炭黑有的耐热性,在无机填料中对耐热配合比较适用的有白炭黑、活性氧化锌、氧化镁、氧化铝和硅酸盐。例如:在丁腈橡胶中,炭黑的粒径越小,硫化胶的耐热性越低;白炭黑则可提高其耐热性;氧镁和氧化铝对提高丁腈橡胶的耐热性有一定的效果。具有酸性基团的过氧化物,如过氧化二苯甲酰等,它们对酸性填料是不敏感的,而对那些没有酸性基团的过氧化物,如过氧化二异丙苯等,则有强烈影响,会妨碍硫化反应。酸性填料对烷基过氧化物(二叔丁基过氧化物等)的影响,要比芳香族过氧化物(过氧化二异丙苯等)小。碱性填料对含有酸性基团的过氧化物影响较大,也会使过氧化物分解。炭黑对过氧化苯甲酰的硫化有不良影响。炉法炭黑对过氧化二异丙苯几乎没有影响,而槽法炭黑因呈酸性而妨碍其硫化。

  硅系填充剂一般呈酸性、会妨碍过氧化二异丙苯硫化,但对二叔丁基过氧化物没有什么影响。

  软化剂对耐热的影响

  一般软化剂的分子量较低,在高温下容易挥发或迁移渗出,导致硫化胶硬度增加、伸长率降低。所以耐热橡胶配方中应选用高温下热稳定性好,不易挥发的品种,例如高闪点的石油系油类,分子量大软化点高的聚酯类增塑剂、以及某些低分子量的齐聚物如液体橡胶等。耐热的丁腈橡胶好使用古马隆树脂、苯乙烯—茚树脂、聚酯和液态丁腈橡胶作软化剂。氯磺化聚乙烯橡胶可以采用酯类、芳烃油和氯化石蜡。以氯化石蜡为软化剂时耐热性较好。对于耐热的丁基橡胶,建议使用古马隆树脂的用量不超过5质量份,也可以使用10至20质量份凡士林或石蜡油、矿质橡胶和石油沥青树脂。乙丙橡胶通常采用环烷油和石蜡油作软化剂。