衡水氟橡胶包金属底涂剂多少吨起卖

名称:衡水氟橡胶包金属底涂剂多少吨起卖

供应商:深圳市同泰胶粘有限公司

价格:面议

最小起订量:1/吨

地址:深圳市龙岗区南约村利亨隆工业区A栋

手机:18922858363

联系人:廖鑫 (请说在中科商务网上看到)

产品编号:222626559

更新时间:2025-10-13

发布者IP:111.55.145.181

详细说明
产品参数
品牌:绿新化工
成分:有机硅聚合物、溶剂
外观:透明粘稠液体
环保:ROHS、REACH
类型:氟橡胶热硫化胶水
包装:3KG、20KG
保存方式:常温保存
干燥时间:约3~10分钟
应用范围:工业用
产品优势
产品特点: 底涂剂作为辅助材料,通过提高粘接强度和润湿性,确保涂层或胶水与基材之间形成牢固的结合。它的主要特点体现在其增强粘接力、改善基材表面性能以及适用于多种材料上。
服务特点: 绿新公司创建于2003年,先后分别在深圳和四川两地投入建厂。专业从事环保无毒胶水胶粘剂,处理剂,底涂剂,有机硅助剂的研发、生产及销售的现代科技型企业。公司本着“客户第一,服务第一,品质第一”的原则经营公司。坚持不懈的追求客户满意度为我们带来了巨大的回报,长期稳定的客户源是我们赖以生存的基础!

  衡水氟橡胶包金属底涂剂多少吨起卖

  氟橡胶热硫化胶水的特性与优势

  氟橡胶热硫化胶水是一种高性能粘接材料,专为氟橡胶(FKM)制品的硫化粘接设计。其主要优势在于出色的耐高温性(长期使用温度可达200℃以上)、优异的耐化学腐蚀性(可抵抗燃油、强酸、强碱等介质)以及卓越的耐老化性能。该胶水在硫化过程中能与氟橡胶基材形成化学键结合,粘接强度通常超过橡胶本身的撕裂强度。相比普通橡胶胶水,其分子结构中的氟碳键赋予更强的键能,特别适用于航空航天、汽车燃油系统和化工设备等严苛环境下的密封件粘接修复。

  有些工厂很容易见到一些胶,而这些胶的应用范围是比较广的,比如说氟橡胶这种胶,在汽车和我们的家用电器方面都经常需要用到,可以说是一种重要的材料,所以有关于氟橡胶的相关知识点我们还是很有必要进行了解的,可以从氟橡胶配方开始了解。接下来本文就向大家详细介绍有关于氟橡胶配方分析的相关知识点,对此有了解需求的朋友们可以参考了解一下。

  氟橡胶(fluororubber)是指主链或侧链的碳原子上含有氟原子的合成高分子弹性体。氟原子的引入,赋予橡胶的耐热性、抗氧化性、耐油性、耐腐蚀性和耐大气老化性,在航天、航空、汽车、石油和家用电器等领域得到了广泛应用,是国防***工业中无法替代的关键材料。自从1943年以来,先后开发出聚烯烃类氟橡胶、亚硝基氟橡胶、四丙氟橡胶、磷腈氟橡胶以及全氟醚橡胶等品种。

  1,主成分分析:把几个综合变量来代替原来众多的变量,使得这些综合变量能够尽可能地代表原有变量信息量,且彼此之间互不相关的一种降维的方法。

  氟橡胶配方分析

  2,全成分分析:将送检样品中的原材料、填料、助剂等进行定性定量分析。塑料原材料种类、填充料种类、粒径、助剂种类影响对产品的性能、寿命。由于不同类型助剂会对产品性能造成不同影响,所以通常采用同一种原材料和同一种填料。

  3,比例分析:检测样品的配方成分和比例,综合分析样品中的有机物和无机物的组成和含量,对化工行业的高分子产品进行定性定量解剖,为样品的性能改进、优化提出合理的解决方案。

  1 什么是全氟橡胶?

  全氟橡胶(通常称为FFKM或PFE)是四氟 乙烯(TFE)和全氟乙烯醚(PFVE)的共聚物。由于全氟橡胶自身结构是化学惰性的,所以利用一些具有硫化交联点的单体(CSM)进行硫化。这些硫化点单体通常含有自由基活性溴和(或)碘原子,或含有全氟烷腈基(被导发生三聚反应,生成为全氟三嗪网络,见全氟橡胶交联剂部分)。

  全氟橡胶在20世纪60年代晚期发展起来, 全氟橡胶含有大约72.5%氟原子(质量分数),且聚合物主链上没有大量的碳氢链段。

  一般氟橡胶具有较低的氟含量,质量分数大约为65.9%~70.5%。引入大量偏氟乙烯单体使氟橡胶获得许多碳烃性能。在常用的氟橡胶中,烃引入了热力学薄弱点。氟碳键的离解能 (BDE)高于碳烃键大约25%~30%(取决于基准)。氟碳键的BDE是514kJ/mol,而碳烃键的BDE是338kJ/mol。

  2现有PFE牌号

  商品化全氟橡胶主要有两种。种是耐化学介质型,通过适宜的过氧化物和助交联剂交联。耐化学介质牌号主要用于要求耐化学介质和温度不是太高的场合。这些型号相对于其他胶料牌号较便宜,适用于各个行业化学品处置、清洗和化学腐蚀工艺等应用场合。

  其他主要全氟橡胶牌号为耐高温型(HT),需要一些催化剂交联生成三嗪交联网络或使用二氨基双酚AF形成苯并噁唑交联点。工作温 度高于230℃时可采用这些材料。全氟三嗪网络交联结构能在315℃下长期使用,且具有很小的物性损失和良好的压缩永久变形性。苯并噁唑硫化橡胶的使用上限温度大约是275~280℃。耐高温型全氟橡用于航空航天、石油天然气和化学工业中,这些领域具有许多端热环境和强腐蚀性的化学介质,这种全氟橡胶在这些领域中使用良好。

  也有一些特种全氟橡胶,主要应用在半导体领域,具有好的耐等离子体性、不同程度的表面透明和清洁度。为了实现这些材料的大应用优势,需要在清洁的环境中混炼和加工。

  3全氟橡胶的硫化剂

  目前,全氟橡胶有几种交联剂,其中一些比较常见的交联剂是自由基共硫化剂,催化引发的三嗪硫化剂形成苯并噁唑交联键。这些方法可以充分硫化各自的全氟橡胶,然而,它们具有各自的优点和不足。使用者要仔细选择合适的硫化剂,以满足的使用要求。一般为了大实现 每一种硫化体系的性能,都需要进行二次硫化。

  过氧化物助交联剂大多用于耐化学品PEF 牌号。采用含溴或碘的硫化点单体(X-CSMA:X=Br或I)和适宜的助交联剂结合过氧化物产生的自由基,这种交联剂适合应用于使用温度上限在230℃和蒸气、酸和热水环境中。采用X-CSM和过氧化物硫化剂硫化的全氟橡胶的高温压缩永久变形不如三嗪硫化体系硫化的全氟橡胶。

  交联耐化学介质型全氟橡胶时,三烯丙基异氰酸酯(TAIC)作为助交联剂在物理性能和耐热性方面表现出好的综合性能。TAIC可从混炼的聚合物中迁移出来,在交联反应中易发生共聚。因此,其影响聚合物的加工性能(例如,污染模具),所以有时采用三甲基异氰酸脲酯(TMAIC)替代TAIC。使用TMAIC或与TAIC并用可提高压缩永久变形性能,这种方法会轻微迟延硫化,在交联过程形成更为有序的交联结构。TAIC和TMAIC的化学结构如图1所示。

  图1常用的全氟橡胶助交联剂

  因为硫化反应是过氧化物引发的,所以这些材料变得易焦烧。全氟橡胶的混炼和加工过程中,良好的温度控制。一般用过氧化物,如2,5-二甲基-2,5-二叔丁基过氧化物己烷(DB-PH)来焦烧,其分子结构如图2所示。

  在必要的情况下,可采用具有防焦性的过氧

  图2DBPH过氧化物的分子结构

  化物,如LuperoxHP101XLP。然而在PFE中使

  用这些材料,助交联剂在模压硫化过程中易迁移到全氟橡胶表面,造成模具污染。这些具有防焦性能的过氧化物可与其他过氧化物(如DBPH)并用来调节硫化速率。

  为了在耐高温型全氟橡胶中形成三嗪交联网络,采用一种催化剂,在高温下与含有腈基的交联点(CN-CSM)反应生成三嗪环结构,如图3所示。

  R+=全氟聚合物

  图3三嗪环分子结构

  这种芳香杂环结构具有好的热稳定性,在315℃下持续使用时性能良好。同时这种结构的全氟橡胶具的化学品抗耐性。不同浓度的CN-CSM可加成到全氟橡胶中,获得不同的交联密度。然而这种交联剂易于在水蒸气或热水中水解。暴露在这些介质中时,过氧化物中环结构通过芳基亲核取代反应迅速打开,同时橡胶模量迅速降低,将影响密封和物理机械性能。

  这一缺点可通过使用双硫化体系(过氧化物-助交联剂和形成三嗪的催化剂共同组成的混合硫化剂或单用过氧化物助交联剂硫化含有CN-

  CSM的全氟橡胶)得到部分改善。此外,两种硫化体系既有优势也存在不足之处。双硫化体系的优势是橡胶耐水解性大幅提高,并可保持好的压缩永久变形性。单用过氧化物/助交联剂硫化体系表现出的耐水蒸气和热水性,但压缩永久变形性相比双硫化体系略有降低。

  值得注意的是对于过氧化物/助交联剂在两种硫化体系中需要使用纯的化学物质;这些材料的载体会吸水。两种硫化体系的缺点均是降低了高使用温度,从315℃降低到接近250℃~260℃。对用于CN-CSM型全氟橡胶的每一种硫化体体系,建议添加少量的吸酸剂。

  含CN-CSM的全氟橡胶用苯并噁唑交联(如图4所示)后具有较好的热稳定性,大约为275℃~280℃。

  图4苯并噁唑交联剂交联示意图

  4全氟橡胶的基本分子结构

  四氟乙烯和全氟乙基醚组成了全氟橡胶的基本结构,如图5所示。

  这个结构本质上与过氧化硫化型和耐高温催化型全氟橡胶橡胶的结构一样。CSM可以是含碘或溴的单体(过氧化硫化),或是含有腈基的单体(催化硫化)。R;基团是碳氟烃短链段。

  图5含CSM的常用全氟橡胶结构

  5PFE的基本性能

  几种全氟橡胶采用典型质量控制配方的常规性能如表1所示。这些配方中仅含炭黑(15份N330)、硫化剂和吸酸剂(仅用于过氧化物硫化体系)。耐高温催化剂硫化全氟橡胶含有不同浓度的CSM(耐高温全氟橡胶的数据是由苯并噁唑硫化胶料获得,不包含混合硫化剂和过氧化物硫化剂硫化胶料的数据)。值得注意的是,因为与氟橡胶或其他碳烃弹性体相比,全氟橡胶具有较高的热膨胀系数,所以在230℃以下,压缩永久变形压缩试样的压缩率采用25%;300℃时,压缩试样选用18%压缩率。

  尽管过氧化物助交联型全氟橡胶的交联密度基本是相同的,但是在不同重均分子量的全氟橡.胶中表现出不同的拉伸强度和压缩永久变形性。

  耐高温型全氟橡胶因CN-CSM含量不同表现出

  不同的机械性能和压缩永久变形性。

  6全氟橡胶的耐化学介质和耐热性

  对于全氟橡胶和硫化类型,在各种浓度和条件下对各种化学介质表现出的抗耐性。化学品(如性溶剂)一般会损害其他氟橡胶,但对全氟橡胶的影响很小,甚至没有。不同氟弹性体的耐化学品性能示例如表2所示。

  这些材料的耐热性好,甚至在腐蚀性化学介质中也是如此。对于过氧化物/助交联剂硫化的全氟橡胶,可在大约230℃下使用。因为三嗪交联结构具有好的热稳定性,所以耐高温型全氟橡胶的使用上限温度大幅改善,提高到315℃。使用上限温度通常采用热分析技术(例如热重分析仪)测定,计算在一定时间里(例如1000h)预期的性能和或质量损失。

  7PFE 应用中需注意的问题

  当考虑在某场合应用全氟橡胶时,有几个问题需要考虑,确保正确地选择全氟橡胶和配合剂。

  问题包括(提供尽可能多的和细节):

  1)在什么样的温度和环境下使用?

  a.成品会接触何种化学介质?

  b.将接触蒸气和热水吗?

  2)物理性能是什么?

  a.拉伸强度、拉断伸长率、定伸应力、硬度和撕裂强度;

  b.压缩永久变形、耐热和耐介质、成品颜。

  3)长期使用的上限温度是多少?

  能否在更高温度下使用?温度是多少,能持续多久?

  4)全氟橡胶需要粘在一种基体上吗?

  5)成品将应用于静态还是动态场合?

  6)成品将如何成型?

  全氟橡胶在工程应用中重点考虑因素包括:1)长期使用的温度;

  a.使用上限温度为230℃时,使用耐化学品全氟橡胶牌号;

  b.温度高于230℃,采用耐高温型全氟橡胶。

  2)对水蒸气和热水应用场合,单独使用过氧化物/助交联剂或采用催化剂硫化;

  3)在等离子体环境中应用时,采用特种全氟橡胶;

  4)使用中的全氟橡胶密封件压缩量(与高的热膨胀系数有关);

  a.对于高于270℃的场合,建议使用VPt>Vc>VPb,所以,一般选用不锈钢或铂作为电材料。制作电容器的固体电解质时,可采用电化学法中的动电位扫描法。苯胺在120℃的真空中蒸馏,在0.5mol/lAn和0.5mol/lH2SO4的溶液中进行聚合。不锈钢电(SS)用金刚砂抛光,二次蒸馏水洗涤风干。SCE作参考电,用动电位扫描法(速度为200mV/s,电压为0.75V)来进行电化学沉积,沉积反复进行,直到每个电上有90mg聚苯胺。随着扫描速度的提高,沉积速率下降(大约要扫描1000次)。沉积好后,将PAnI/SS电在0.5mol/lH2SO4中洗3次,在1mol/lHClO4和3mol/lNaClO4中洗1次,在丙烯酸的容器中进行组装,这种电容器可获得450F的可循环电容。

  三

  可溶性聚苯胺的合成

  在制作固体电解电容器的固体电解质时,聚苯胺的溶解性是很重要的参数。因为聚苯胺在大部分常用的有机溶剂中几乎不溶,高分子量的聚苯胺的加工性一直是个难题,因为在软化点或熔融温度以下PAn就已降解,所以,PAn熔融加工。近几年,人们在改善聚苯胺的加工性能方面做了大量工作,主要有PAn的复合改性;掺杂态PAn的改性;PAn的嵌段及接枝改性,使聚苯胺的溶解性、加工性得到了改善。可溶性聚苯胺的合成可以说是导电高分子材料领域的一个里程碑。据报道,目前解决导电聚苯胺可溶性的方法主要有四种:其一是采用功能质子酸掺杂制备可溶性的导电聚苯胺,用有机酸掺杂后的溶解性如表2所示,掺杂后聚苯胺的溶解性有了一定的提高;其二是制备聚苯胺的复合物;其三是制备聚苯胺的胶体微粒;其四是制备可溶性的导电聚苯胺烷基衍生物。

  近报道的聚苯乙烯磺酸掺杂聚苯胺的合成中,以苯胺(An)为单体,过硫酸铵(APS)为氧化剂,在聚苯乙烯磺酸(PSSA)的水溶液中,合成了可溶于水的PSSA掺杂PAn,并且得到的掺杂PAn的电导率达0.156S/cm。可溶性聚苯胺的合成也大大提高了电解电容器的性能。Shin等人在制作卷绕式铝电解电容器固体电解质时,用化学法和电化学法反复合成聚苯胺,将合成好的聚苯胺溶解在特定的有机溶剂中,在铝金属薄膜上形成介质氧化层后,再浸入具有高电导率的聚苯胺溶液中,形成一层导电聚合膜,作为固体电解质的阴。浸透不仅可在常温和常压下进行,在高温或降低压力的情况下仍可进行。可溶性的聚苯胺包覆均匀,而且这样制得的电容器的体积小,阻抗低,使用频率和性得到提高,且生产工艺简单,降低了电容器的生产成本(聚苯胺的花费大约只有TCNQ复盐的1/50)。Hideo Yamamoto等人用Al-Zr合金箔片作为一个电,可溶性的聚苯胺掺杂羧基酸作为阴。用(NH4)2S2O8作为氧化剂,用NH4OH处理获得未掺杂的可溶性PAn,在N-甲基-2吡咯烷酮(NMP)中用羧酸溶解PAn。实验中,掺杂PAn时用不同的羧酸,如表3所示,其中,柠檬酸的温度稳定性好,故选用柠檬酸掺杂是比较合适的。

  四

  聚吡咯的合成

  在诸多导电聚合物中,由于掺杂聚吡咯具有相对较高的电导率,导电能力又有良好的环境稳定性及易于采用化学或电化学的方法合成等特点,因而受到青睐。Diaz等人于1979年首次采用化学氧化的方法合成了具有电子导电性能的掺杂聚吡咯(PPY)。电容器要求小型、片式、大容量、低等效串联电阻、低损耗正切值和高频性能,传统的液体铝电解电容器及MnO2固体钽电解电容器已满足这些要求,因此,采用更高电导率的材料作为电解电容器的阴,已成为电解电容器的发展趋势。由于聚吡咯的电性能优良,电导率高达120S/cm,较MnO2(约0.1S/cm)、TCNQ(约1S/cm)高2个~3个数量级,较常用有机电解液高4个数量级,较聚苯胺也高了许多,因而,聚吡咯固体电解电容器就成了研究者关注的对象。1985年,日本特许公报(专利号为6037114)先公开了使用导电聚合物聚吡咯制作为电解质的方法,此后,聚吡咯固体电解质电容器开始得到应用。下面主要介绍聚吡咯的两种合成方法。化学氧化合成法化学氧化聚合即将吡咯单体和氧化剂按一定比例溶于有机溶剂中,慢慢滴入一定浓度的催化剂(乙醇溶液),反应在搅拌下进行2h,吡咯在氧化剂的作用下发生聚合反应形成吡咯的聚合物。反应完毕,将生成物真空抽滤、洗涤、真空干燥。合成的机理就是自身的加成和聚合反应。其中,催化剂可以选用路易士酸(Lewis),如FeCl3、CuCl、CuCl2等。在化学氧化合成聚吡咯的实验中,分别选用FeCl3、CuCl、CuCl2作为催化剂时,聚吡咯的收率及电导率如表4所示,可知FeCl3性能好。

  在-20℃至室温下,聚合反应都可以得到导电性较好的聚合物(σ>10-2S/cm),用适当浓度的掺杂剂(I2、NaF、LiClO4)掺杂聚吡咯,可以提高导电性。但是,化学氧化法通常得到的是黑粉末(一般称为吡咯黑),由于吡咯黑的不溶/不熔特性,因而,用一般高分子加工方法加工成型,实际应用受到限制。用化学氧化法制备吡咯膜的报道还很少。近报道了通过界面化学氧化聚合的方法制备聚吡咯薄膜。实验选用不同的溶剂,如表5所示,可见三氯甲烷是比较合适的。当选择三氯甲烷和水作为两相溶剂、以过硫酸铵作为氧化剂时,能得到均匀、致密、导电性较高的聚吡咯薄膜。实验明,随着吡咯与氧化剂浓度比下降及反应温度的升高,过氧化作用增强,聚合膜的电导率下降。

  由于这样制得的聚吡咯膜的电导率不够高,且聚吡咯不易附着在金属氧化膜的表面,依靠化学聚合的方法在氧化膜表面上形成的聚吡咯导电膜的密度和强度都不够高,不能满足电容器电性能方面的要求。所以,在制作电解质时,通常采用电化学法合成聚吡咯。但是,由于电容器的阳氧化膜是不导电的,只能首先在阳氧化膜上采用化学聚合的方法形成聚合物的导电层(用化学法在阳上合成一层PPy膜或包覆一层可溶性的PAn膜),或用硝酸锰热分解的方法形成MnO2导电层作为中间电,以便后面工艺顺利进行。用Al-Zr合金箔片作为一个电,可溶性的聚苯胺掺杂羧基酸作为阴。然后浸入0.2mol/l吡咯和0.1mol/lβ-萘磺酸中电解聚合包覆一层致密的PPy导电层。先将硝酸锰溶解在适当的溶剂中,电容器的芯子在该溶剂中浸渍,然后在200℃~300℃下进行热分解,在铝箔的氧化铝表面形成导电的二氧化锰层作为阴,然后在MnO2层上包覆通过电解聚合所合成的聚吡咯制得电容器的固体电解质。直接采用化学氧化法一次性合成较厚的导电聚吡咯膜,取代MnO2层。用Fe+3十二烷基苯磺酸盐作为氧化剂(这种氧化剂是在甲醇中用十二烷基苯磺酸中和Fe(OH)3制备的),在-70℃条件下,将赋能后的钽电解电容器浸入有氧化剂的吡咯单体中。将浸渍好的电容器在空气中干燥30分钟,然后用甲醇清洗、烘干。这样,重复几次可形成较厚的导电聚吡咯阴层,导电率大可达80S/cm,与电化学合成的聚吡咯可以相媲美。但是,这种方法只适合制作片式电解电容器,而对于卷绕式电解电容器,在将卷绕式芯组浸入吡咯单体和氧化剂溶液中,用化学氧化法形成导电聚合层时,聚合反应会很快发生,固体电解质无法深入电容器芯组的内部,所期待的电性能达不到要求,使卷绕式电容器的应用受到限制。电化学聚合法这种制备导电聚吡咯的方法是借助于电化学聚合反应,同时伴随氧化反应合成的。大致方法是用恒电位法合成聚吡咯膜的形成电流与时间曲线,在阳上以4mA电流、对甲苯磺酸钠为电解质(室温时含单体浓度为0.1~0.3mol/l),支持电解质和水的电解液进行电化学聚合。40min~100min后取出,洗净溶剂干燥即可。电解质浓度、电解质阴离子种类和聚合时间对聚吡咯薄膜导电性能都有一定的影响。利用电化学沉积方法在腐蚀并赋能的铝箔试样表面合成了聚吡咯,并制备了聚吡咯铝电解电容器,在聚吡咯包覆的过程中,聚合溶液的毛细现象使电容器的阴和阳之间形成微小的电气通路。另外,聚合溶液对铝氧化膜有一定的腐蚀作用,导致氧化膜的缺陷增加,这两种情况使电解电容器漏电流增加。研究发现,采用合适的阻断材料和缩短聚合时间均可有效地降低它们的影响。通过电聚合导电聚吡咯的合成研究,认为电解质浓度为8mmol/l,聚合时间为80min时电性能达到大值,继续延长聚合时间,膜的电导率基本不变。可以分别用两种方法制得Ta电解电容器的电解质:一种方法是在Ta/Ta2O5上先用氧化聚合在阳上形成一层PPy膜作为中间电,然后用电化学聚合合成PPy作为阴;另一种方法是只用氧化聚合反复几次形成PPy阴。为了获得一定的稳定性,反复几次是很重要的。合成聚吡咯时,混合0.03mol/l吡咯单体和0.07mol/lFeCl3以及0.1mol/l芳香族磺酸盐,在去离子水中,反复浸入,包覆一层聚吡咯,随后用蒸馏水洗涤。在80℃下干燥15分钟,阳在室温下经1%H3PO4或0.1mol/l芳香族磺酸盐或无机酸处理,实验明,H2PO4-比芳香族或无机酸更适合作为掺杂剂。

  导电高分子材料的制备

  一

  复合型导电高分子的制备方法

  复合型导电高分子在制备中所用的复合方法主要有两种:一种是把亲水性聚合物或者结构型导电高分子和基体高分子放在一起进行共混;另一种是将各种导电填料,如金属粉末、铝纤维、碳纤维、不锈钢纤维及很多金属纤维填充到基体高分子里面,填充的纤维佳直径为7μm。纤维状填料的接触几率很大,因此金属纤维在填充量很少的情况下就可以获得较高的导电率。其中,金属纤维的长径比对材料的导电性能有很大的影响,长径比越大,其导电性和屏蔽效果越好。

  二

  结构型导电高分子的制备方法

  结构型导电高分子的制备方法有以下几种:化学氧化聚合法、电化学聚合法以及热分解烧结新工艺等。化学氧化聚合法化学氧化聚合是在酸性的条件下用氧化剂制得电导率高、性质基本相同、稳定性好的聚合物,经常使用的氧化剂有(NH4)2S2O8,KIO3,K2Cr2O7等,它们往往同时也是催化剂。化学氧化聚合法制备聚合物主要受反应介质酸的种类及浓度、氧化剂的种类及浓度、反应温度及时间、单体浓度等因素的影响。研究较多的主要是溶液聚合、乳液聚合、微乳液聚合、界面聚合、定向聚合、液晶结合及中间转化法等。电化学聚合法电化学聚合法主要有恒电流法、恒电位法、脉冲化法以及动电位扫描法。以聚苯胺为例,电化学聚合法是在含苯胺的电解质溶液中采用适当的电化学条件,使苯胺发生氧化聚合反应,生成聚苯胺薄膜黏附于电表面,或者是聚苯胺粉末沉积在电表面,一般都是苯胺在酸性溶液中,在阳上进行聚合。影响聚苯胺电化学聚合法的因素主要有:苯胺单体的浓度、电解质溶液的酸度、电材料、电电位、溶液中阴离子种类、聚合反应温度等。电化学聚合法的优点是产物的纯度比较高,聚合时反应条件较简单而且容易控制;缺点是只适宜合成小批量的聚苯胺,很难进行工业化生产。采用化学氧化聚合法制备的聚合物不溶不熔,而且力学性能和加工性能比较差,直接进行加工应用;利用电化学聚合法虽然可以获得聚合物的导电膜,但是膜的面积会受到电面积的限制,不可能做成大面积的实用导电膜。此外,还有一种聚合方法对于导电高分子材料有很好的合成前景,就是酶促聚合。利用酶促聚合方法制备聚苯胺虽然十年之前就报道过,但对于聚吡咯直到近也没有成功地通过酶促聚合制备出来。有学者相信之所以这样是因为相比于苯胺,吡咯具有更高的氧化电势,由于氧化酶和漆酶的氧化电势比吡咯的低,所以这些酶上的活性位点不能够直接氧化吡咯单体。可以通过寻找合适的酶促反应催化剂来降低氧化电势,从而使反应顺利进行。

  导电高分子材料的应用

  导电高分子材料是具有导电功能的聚合物材料,随着科学技术以及化工技术的高速发展,导电高分子材料以其自身具有的易加工、质量轻、抗腐蚀、易成型等特性,实现了更大的商业价值以及价值,从而得到了人们越来越多的关注。

  一

  电材料中的应用

  导电高分子材料作为电材料的应用是目前应用广泛的一种。实践明,在以高分子材料如,聚乙炔、聚苯胺、作为电材料的电池中,电池所具有的电功率、电容量和电能质量相对于传统电池而言具有强大的优势。例如,以聚苯胺为电材料、以Al-EMIC为电解质的电池中,电压可达到1.0V,以活性碳纤维为电的电池具有很强的电容量。从而可见,导电高分子材料作为电材料的应用具有广泛的发展前景和商业价值,但在实际发展中电解质仍存在不稳定性,这需要人们对此进行进一步的研究。

  二

  点解沉淀物中的应用

  导电高分子材料在金属电解沉淀中的应用具有重要的意义。一般情况下,在印刷电路的工艺制造中,通常需要采用电解沉淀的方法进行金属沉淀过程,而传统的制作过程中,大都采用具有有毒性质的化学剂进行电解,具有一定的危害性且成本较高。采用导电高分子材料如,聚毗咯为基质进行电解沉淀,不仅实现了电解的性发展,也在一定程度上简化的制作流程,增强了金属吸附性。

  三

  电容器中的应用

  导电高分子材料中的高分子电解质在充当电固体电解质的过程中时,会在电与电解质之间形成容量巨大的双电层,这种双电层在一定程度上,通过采用一些手段可制作成电容器。多数实践明,以混合物作为电容器电解质具有较强的电导率;以高分子材料混合物为电解质制成的电偶电容器,则具有很强的充电放电性,有时电容量能达到0.57F/cm2。

  四

  固体电池中的应用

  在传统的电池中,一般采用液态物质为电解质,从而导致电池经常出现漏液、受潮、稳定性差的现象产生。而通过利用导电高分子材料中的高分子固态电解质并制成相应的电保护膜,则有效的取代了原有的液态电解质,并在减轻电池自身重量的基础上,提升了电池蓄电的能力。此外,有研究表明,通过利用聚吡咯、氧化乙烯固态电解质能制成电压为0.35的光电池,该电池在很大程度上具有绿性质。

  五

  电致变上的应用

  所谓的电致变主要是指:通过对物质施加一定的电压,导致物质发生了一定化学反应,从而改变物质颜变化的过程。实践明,导电高分子材料在基于电致变原理的基础上,可有效的发生电致变过程,从而可将导电高分子材料应用于电致变领域中,如电致变智能玻璃、电致变板等。

  六

  传感器上的应用

  在导电高分子材料中的高分子固态电解质中,在基于不同离子所具有的性质的基础上,采用一定的技术手段进行有效测定可制造出电动势,从而将导电高分子材料中的高分子固态电解质制成传感材料,并应用于传感器中。

  七

  其他方面的应用

  导电高分子材料除上述介绍到的应用外,在其他领域、其他方面同样具有一定的应用价值。例如,微波吸收材料中的应用、半导体元器中的应用、超导体材料中的应用、电子设备仪器防干扰中的应用等。目前,有关于导电高分子材料如何减小热力学、动力学等外界因素的影响,实现在日常生活中的广泛应用以及在新材料中的研究应用,已成为人们研究的重点。

  导电银浆

  导电银浆由导电相银粉、粘合剂、溶剂及改善性能的微量添加剂组成,可分为聚合物导电银浆和烧结型导电银浆,二者的区别在于粘结相不同。烧结型导电银浆使用低熔点玻璃粉作为粘结相,在500℃以上烧结成膜。

  导电银浆产品集冶金、化工、电子技术于一体,是一种高技术的电子功能材料,主要用于制作厚膜集成电路、电阻器、电阻网络、电容器、MLCC、导电油墨、太阳能电池电、LED、印刷及高分辨率导电体、薄膜开关/柔性电路、导电胶、敏感元器件及其他电子元器件。

  金属银粉是导电银浆的主要成分,其导电特性主要靠银粉来实现。银粉在浆料中的含量直接影响导电性能。从某种意义上讲,银的含量高,对提高它的导电性是有益的,但当它的含量超过临界体积浓度时,其导电性并不能提高。银浆中的银的含量一般在60~70% 是适宜的。

  银微粒的大小与银浆的导电性能有关。在相同的体积下,微粒大,微粒间的接触几率偏低,并留有较大的空间,被非导体的树脂所占据,从而对导体微粒形成阻隔,导电性能下降。反之,细小微粒的接触几率提高,导电性能得到改善。一般粒度能控制在3~5μm,这样的粒度仅相当于250目普通丝网网径的1/10~1/5,能使导电微粒顺利通过网孔,密集地沉积在承印物上,构成饱满的导电图形。银微粒的形状与导电性能的关系十分密切。用于制作导电印料的导电微粒以呈片状、扁平状、针状的为好,其中尤以片状微粒更为。圆形的微粒相互间是点的接触,而片状微粒就可以形成面与面的接触,印刷后,片状的微粒在一定的厚度时相互呈鱼鳞状重叠,从而显示了的导电性能。在同一配比、同一体积的情况下,球状微粒电阻为10-2,而片状微粒可达10-4。

  由于银是贵金属,易被还原而回到单质状态,因此液相还原法是目前制备银粉的主要方法。

  粘合剂是导电银浆中的成膜物质。在导电银浆中,导电银的微粒分散在粘合剂中。在印刷图形前,依靠被溶剂溶解了的粘合剂使银浆构成有一定粘度的印料,完成以丝网印刷方式的图形转移;印刷后,经过固化过程,使导电银浆的微粒与微粒之间、微粒与基材之间形成稳定的结合。烧结型导电银浆主要采用低熔点玻璃粉作为粘结剂,通过有机树脂和溶剂作为中间载体,印刷图形在基材上,在烧结过程中,有机树脂和溶剂挥发分解,低熔点玻璃粉熔融成膜,与导电银粉形成牢固可导电的涂层。

  当低熔点玻璃粉含量不变时,电阻率在一定范围内随着银粉的含量逐渐增加而降低。当银粉含量过大时,电阻率反而升高。因为银粉含量过大,低熔点玻璃粉含量不变,即浆料的固体含量过大,有机载体含量过低,那么浆料的黏度过大,流平性差,丝网印刷时,不易形成连续致密的银膜,故电阻率过大。

  当银粉含量不变时,电阻率在一定范围内随着低熔点玻璃粉含量的逐渐增加,电阻率逐渐升高,导电性能越差。在浆料烧结过程中,随着温度升高,低熔点玻璃粉熔融,由于毛细作用浸润并包裹银颗粒,银粉以银离子的形式溶解在熔融的玻璃相。当浆料中的低熔点玻璃粉含量很少时,银粉由于缺少液相而不能铺展在基板上,银粒子倾向于沿垂直方向生长,导致银粒子之间的接触变差。当低熔点玻璃粉含量增加到某一值时,低熔点玻璃粉能够有效润湿银粉,使银粉充分铺展在基板上,银粒子沿水平方向生长,银粒子的接触更加紧密,能够有效形成导电网络。

  半导体芯片封装高导热の导电胶水

  一

  概述

  二

  特性

  三

  技术参数及固化条件

  四

  注意事项