三门峡氟橡胶包金属粘接剂能实地查看吗
常见失效模式与解决方案
氟橡胶热硫化粘接的典型失效包括界面剥离(占65%)、内聚破坏(25%)和混合型(10%)。界面失效多因表面处理不足或硫化不完全,可通过接触角测试(应<80°)预判;内聚失效常与胶水老化或过硫化相关,TGA分析(分解温度应>300℃)有助于诊断。湿热老化(85℃/85%RH)1000小时后强度保持率是关键质量指标。添加硅烷偶联剂(如KH-550)能显著改善界面稳定性,新型POSS纳米粒子改性胶水可使湿热老化性能提升40%以上。
氟橡胶(FKM)是一种高性能的合成橡胶,由于其的化学结构和的性能,在许多领域中得到了广泛的应用。本文将详细介绍氟橡胶的化学结构、性能特点、生产工艺及应用领域等方面的知识。
一、化学结构
氟橡胶是由偏二氟乙烯(VDF)、四氟乙烯(TFE)以及少量第三单体(如六氟丙烯)共聚而成的合成橡胶。其化学结构式为:[CF2=CF-CF2-CF=CF2]n,其中第三单体的引入使得氟橡胶具有更加的性能。
二、性能特点
1.高度耐高温性能:氟橡胶具有很高的热稳定性,可以在高温下长期使用,具有良好的耐热性能。
2.优良的耐化学腐蚀性能:氟橡胶对大多数化学物质具有很好的抵抗力,可以用于制造与强腐蚀性介质接触的密封件。
3.良好的机械强度和耐磨性:氟橡胶具有较高的弹性模量和硬度,因此具有较好的机械强度和耐磨性。
4.良好的电缘性能:氟橡胶具有较高的缘电阻和介电常数,适用于制造电线缘层和电子元件的密封材料。
5.耐气候老化性能:氟橡胶对紫外线、臭氧等具有很高的稳定性,可用于户外长期使用。
三、生产工艺
三门峡氟橡胶包金属粘接剂能实地查看吗
氟橡胶被称为“橡胶王”,是一种含氟高分子弹性体,具有的耐介质功能、耐高温功能、耐酸碱功能和耐高真空功能,但耐低温功能较差,使用受到限制。
若将氟橡胶与氟硅橡胶并用,制备氟橡胶/氟硅橡胶并用胶,功能会发生什么影响呢?
氟硅橡胶是一种侧链含有氟原子的硅橡胶,其主链为硅氧键,分子链柔顺性好,耐低温功能。氟硅橡胶中含有一定量不饱和键,能够选用过氧化物硫化系统进行硫化。
氟橡胶的硫化温度和硫化时刻与氟硅橡胶大致相同,两者能够完成共硫化,因此这两种橡胶并用在理论上具有可行性。
中国器工业集团第五三研究所选取如下材料,进行了试验
氟橡胶,商标PL958
氟硅橡胶,商标AFS-R-1003
硅橡胶,商标110-2
物理功能比照
不同并用比氟橡胶/氟硅橡胶并用胶的物理功能如表2所示
从表2能够看出,当氟橡胶/氟硅橡胶并用比为8/2时,并用胶的物理功能较好,这是由于该并用比下,氟橡胶与氟硅橡胶构成相互涣散较好的结构,而氟硅橡胶的份额相对增大或减小均会使两相相容性变差。
耐介质功能和脆性温度
体积(质量)变化率是试样在介质中处理前后体积(质量)的变化率,其值越小,试样的耐介质功能越好,反之越差。不同并用比氟橡胶/氟硅橡胶并用胶的耐介质功能和脆性温度如表3所示。
从表3能够看出:跟着氟硅橡胶用量增大,并用胶的耐介质功能略有下降,耐低温功能显着提高;普通氟橡胶的脆性温度仅为-20 ℃左右,当氟橡胶/氟硅橡胶并用比为5/5和8/2时,并用胶的脆性温度别离可达
-52和-45 ℃,耐低温功能大幅提高;氟硅橡胶提高并用胶耐低温功能的同时并未使其耐介质功能大幅下降,即便氟橡胶/氟硅橡胶并用比为5/5,并用胶仍具有的耐介质功能。
选取氟橡胶/氟硅橡胶并用比为8/2和5/5的并用胶进行断面微观形状剖析
当氟橡胶/氟硅橡胶并用比为8/2时,并用胶构成了均匀的相态结构,未呈现显着分层,阐明两种胶完成了共硫化,宏观表现出的物理功能;当氟橡胶/氟硅橡胶并用比为5/5时,并用胶呈现显着的中空区域,受力时会发生裂纹使其功能显着下降,这表明两种胶混合均匀,不能构成涣散均匀的结构。
结论:
(1)跟着氟硅橡胶用量增大,并用胶的脆性温度下降,耐低温功能显着提高。
(2)当氟橡胶/氟硅橡胶并用比为8/2时,并用胶的微观结构未呈现显着分层现象,物理功能较好。
三门峡氟橡胶包金属粘接剂能实地查看吗
氟橡胶(FKM)因具有耐油、耐高温、耐溶剂、耐强酸、耐强氧化剂、阻燃、耐老化等一系列优良的特性,所以在国防军工、航空航天、电子通信、车辆船舶、石油化工等尖端技术领域获得了广泛的应用。是近几年老,随着上述相关行业的高速发展和技术进步,FKM作为一种不可替代的高性能弹性体材料,不仅在需求上有了大幅度增加,而且其用途也正在不断地扩大。
从技术的角度来讲,尽管FKM从基础研究到应用研究都取得了很大的进展,但在一些的使用场合,目前人们更为关注的还是FKM的低温特性、压缩永久变形性、耐碱性、耐含甲醇汽油性、耐强氧化剂性、低抽出性、低毒性等问题。
因此,本文将针对上述问题,就具有这些特性的FKM胶料的配合技术作一介绍。
一、FKM的种类、结构和特点
具有代表性的FKM的种类、结构和特点见表1。对FKM来讲,因其聚合物结构和所用硫化体系不同,所以硫化胶的性能也各有差异。为了使FKM能够满足各种苛刻条件下的使用要求,所以除选择适宜的品级外,在胶料的配合上加以改善也是十分必要的。
表1 FKM的种类、结构和特点
种类
特点
用途
二元类PKM
耐热性
油封、衬垫、软管
三元类FKN
耐油性
含有全氟乙烯醚的PKM
耐品性、低温特性
全氟醚PKM(FFKM)
耐品性、耐热性、低温特性、氧化稳定性、低渗透性
O形圈、衬垫(半导体、化工、航空航天)
TFE-丙烯类PKM
耐品性(无机酸碱)、耐热性
油封(耐添加剂)
氟类热塑性弹性体
热塑性、低抽出性和透明性
O形圈、胶管(医疗、食品)
氟硅橡胶(FVMQ)
低温性、耐油性
密封件、膜片
氟类液体橡胶
低温性、耐油性
密封件、膜片
羧基亚硝基FKM
低温性、耐强氧化剂性(N2 O4 等)
密封制品
全氟三嗪橡胶
热稳定性(长期使用温度300℃),但低温性较差,对浓酸稳定,耐碱性很差
密封制品
氟化磷腈橡胶
低温性、耐油性、耐溶剂性、耐酸碱性
密封制品
聚二氟硫酰橡胶
耐磨性(相当NR的16倍)、低温性
目前,构成市场主导品种的是偏氟乙烯(VDF)与六氟丙烯(HFP)共聚的二元类FKM,其组成为:VDF摩尔分数80%,氟质量分数约66%,Tg为-20℃。近年来,共聚入四氟乙烯(TFE)、减少VDF含量(提高氟含量)的三元类FKM的需求明显有所增加。对三元类FKM来讲,氟含量愈高、耐品性、耐腐蚀性、耐油性、耐燃油渗透性就愈好,但低温特性会变差。目前,市售的FKM各品级的低温特性见表2。作为改善低温特性的品种,除共聚了全氟乙烯醚的FKM外,还有含氟硅类(FVMQ)和主链中含有六氟丙烯氧化物单元的FKM。
表2 FKM主要品级的低温特性
制造公司
品级
脆性温度/℃
三爱富
2463
-28
2462
-25
2603
-25
晨光
2463
-26
3M
FC-2174
-25
FEC-16241A
-42
FEC-16227A
-40
杜邦
GFLT-301、601、501
-24(TR)
GFLT-305、505、506
-30(TR)
大金
G716、G723
-24~-25
由于VDF单元遇碱性化合物容易引起脱氟酸反应,所以三元类FKM的耐碱性是有限的。在接触有机胺化合物或强碱性水溶液的场合,适用的是TFE/丙烯(Pr)共聚的四丙氟橡胶或TFE/全氟乙烯醚共聚的FKM。在含有VDF的品级中,耐碱性较好的是分子中不含HFP而含乙烯醚的FKM。其次,则是VDF含量低、氟含量高的三元类FKM。不过,通过四丙氟橡胶与三元乙丙橡胶(EPDM)共混来改善耐碱性也是十分有效的。
在接触强氧化剂(N 2 O4 、发烟硝酸等)的场合,则可选用羧基亚硝基FKM或全氟醚型的FKM。
二、FKM用配合剂的选择
1.吸酸剂
对胺硫化及多元醇硫化来讲,吸酸剂是的配合剂。当吸酸剂与氟酸反应并生成氟化物时,即使使用一种金属氧化物,如MgO、Ca(OH) 2 、CaO、Zn0、PbO等都没关系,但在要求耐热性和低压缩永久变形的胶料中,好是用高活性的MgO。对于厚制品,可在胶料中使用一定数量的Ca(OH)2 、CaO的配合可消除胶料中产生的气泡,同样也具低压缩永久变形这一特点。在要求耐酸性、耐水性的场合,则需要配合一定数量的PbO。但出于方面的考虑,近年来有禁用铅化物的趋势,这对要求耐酸性、耐水性的制品来讲,采用过氧化物硫化体系是解决这一问题的有效方法之一。在多元醇硫化体系中,作为吸酸剂,当使用PbO时不仅制品表面无光泽,而且在溶胀、蒸汽条件下的压缩永久变形也比较大。
对多元醇硫化体系来讲,当含有Ca(OH) 2 吸酸剂的胶料在空气中放置时,就有可能吸收水分和CO2 ,降低吸酸剂的反应性,而水分则会提高其反应性,这样就会进一步地影响到硫化速度。另外,有时也会因聚集而出现分散不良的现象,因此好使用充分干燥或表面处理过的材料,这样就可辊筒的污染(吸酸剂附着在辊筒表面)。
2.填充剂
FKM用填充剂的主要目的不是为了补强,而是为了调节硬度、降低成本等。对HAF这样的补强性炭黑来讲,因对硬度的提高幅度较大,不宜高填充,所以通常主要使用的是大粒径的非补强性炭黑(如喷雾炭黑、中粒子热裂法炭黑)。在要求耐磨性、着或考虑成本的场合,则可使用白炭黑、硅酸钙、硅酸镁、硅酸铝、碳酸钙、滑石粉、聚四氟乙烯、炭纤维、石墨、二硫化钼、氮化硅、硫酸钡、氟化钙等。是对于注重泽的制品,多数是在以硫酸钡为基础的混合物(配有5份覆盖力强的TiO 2 )中添加颜料后制造的。就硫化体系而言,由于多元醇及胺硫化体系在硫化时可使橡胶本身着,所以对要求泽明亮的制品好是用过氧化物硫化体系的FKM。在上述填料中,二硫化钼、炭纤维、滑石粉、石墨、聚四氟乙烯、氮化硅、氮化硼对提高耐热性、减小摩擦系数是有效的,但在一定程度上均会降低硫化胶的物性(5%左右)。对于碳酸钙、硫酸钡、硅酸钙、氟化钙等无机填料,挤出、模压、耐热性较好的是氟化钙,但压缩永久变形较差。硅酸钙的耐热老化性优于氟化钙,硫酸钡的综合性能也不错。
3.增塑剂和加工助剂
一般来讲,在FKM胶料中是不用增塑剂和加工助剂的。因为FKM制品的使用条件为苛刻,能够使用的增塑剂和加工助剂十分有限,这也是注重物性超过注重加工性能的主要原因。当在FKM中使用加工助剂时,不仅会使压缩永久变形增大,而且还会导致耐热性下降。此外,因低分子聚乙烯与过氧化物具有反应性,所以在过氧化物硫化体系的FKM中配合是不适宜的。就脱模剂而言,除可用有机硅类和氟类脱模剂外,作为内脱模剂也可在胶料中配合少量的脂肪族胺或脂肪酸酰胺化合物,但同时也会带来与加工助剂同样的结果(压缩永久变形增大,耐热性下降)。而且,因内脱模剂在硫化时会迁移到橡胶表面,所以对硫化体系与加工助剂的协同效果也会产生一定的影响。
三、FKM的各硫化体系及其特点
FKM的硫化,通常可分为胺硫化、多元醇(双酚)硫化和过氧化物硫化三种类型。胺硫化体系和多元醇硫化体系是以胺或镍盐(铵盐等)为催化剂,通过二胺或双酚化合物与脱氟酸(氟化氢)反应形成的双键加成进行硫化的。但无论是哪一种硫化体 系都要中和产生氟酸,因此配合吸酸剂(金属氧化物)是十分必要的。其各硫化体系的特点见表3。
表3 FKM各硫化体系的特点
项目
胺硫化
双酚硫化
过氧化物硫化
硫化剂
二胺
双酚AF
TAIC
促进剂
不需要
四价铵盐
有机过氧化物
的配合剂
金属氧化物(MgO)
金属氧化物[MgO及Ca(OH)2 ]
不需要(当交联点为Br时,添加金属氧化物,有时会加快硫化速度)
氟含量与硫化特性
提高氟含量会降低硫化性能
与氟含量无关
硫化胶特点
(1)硫化速度快
(1)压缩永久变形小
(1)耐品性、耐蒸汽性优良
(2)机械强度高
(2)焦烧稳定性好
(2)金属洗提成分少(无吸酸剂时)
(3)粘合性优良
(3)脱模性好
(3)机械强度高
(4)压缩永久变形大
(4)模具污染性小
(4)抗屈挠性好
(5)耐热性良好
(5)不需二段硫化
主要用途
油封、膜片、涂料、厚制品
O形圈、衬垫、软管、胶板、油封
膜片、油封、耐酸和耐蒸汽用密封件
基本配方
生胶
100
生胶(含硫化剂)
100
生胶
100
MT炭黑
20
MT炭黑
20
MT炭黑
20
MgO(低活性)
15
MgO(低活性)
3
TAIC
4
硫化剂V-3①
3
Ca(OH)2
6
过氧化物②
1.5
注:①N,N′-双肉桂叉-1,6-己二胺;②2,5-二甲基-2,5-二叔丁基过氧化己烷。
1.胺硫化与多元醇硫化
就胺硫化体系而言,为了赋予硫化剂在混炼时的焦烧稳定性,在配合体系中可以以胺盐的方式使用。实际上,从加工稳定性与硫化胶物性的均衡来讲,己二胺氨基甲酸盐、乙二胺氨基甲酸盐、环己二胺氨基甲酸盐等都可以使用。由于二胺硫化剂具有脱氟酸催化剂的作用,所以不需要使用的催化剂。但在多元醇硫化体系中,因硫化剂本身不具有催化剂的作用。所以作为与镍盐的共催化剂配合一定数量的氢氧化钙是十分必要的。
作为硫化剂,也可使用对苯二酚、双酚A等双酚合化物,但从耐热性考虑,双酚AF是较为理想的一种硫化剂。是双酚AF/苄基三苯基氯化磷这一硫化体系,对改善FKM硫化胶的压缩永久变形是有效的。不过,目前多数FKM制造厂是将其镍盐及双酚AF与FKM以预混物的方式提供用户的。
2.过氧化物硫化
对过氧化物硫化来讲,目前主要的品级是在分子中作为交联点预先导入碘或溴的FKM,但各公司的品级其构成是不同的。关于硫化机理,作为助硫化剂的多官能不饱合化合物(TAIC)与FKM的交联点是通过有机过氧化物产生的自由基进行反应、硫化的。因不需要吸酸剂,所以是耐水性、耐酸性优良的硫化体系。而且由于不会因吸酸剂而促进脱氟酸反应,所以耐碱性也优于多元醇硫化体系,并可解决多元醇硫化体系有时会出现的龟裂等问题。
在半导体制造装置用密封材料的用途中,洗提金属的问题正在不断增加,而过氧化物硫化体系硫化的FKM将成为解决这一问题的方法之一。另外,即使配合吸酸剂也不会影响硫化特性,所以为赋予粘合性和耐热性,也可配合适量的氧化锌、氢氧化钙等配合剂。
目前,在国产FKM的胶料中主要使用的是N,N′-双肉桂叉-1,6-己二胺(3 # ),双酚AF和过氧化物三种硫化剂,其各品级适用的硫化剂见表4。
表4 国产FKM各品级适用的硫化剂
品级
门尼粘度
硫化剂
加工方法
FE2601
45~75/ML(+10)121℃
3# 、双酚AF
模压、挤出
FE2602
130~180/ML(1+10)121℃
3# 、双酚AF
模压
FE2603
60~100/ML(5+4)100℃
双酚AF
模压、挤出
FE2604
101~129/ML(5+4)100℃
3# 、双酚AF
胶浆涂刷
FE2605
20~40/ML(1+4)121℃
双酚AF
注射成型
FE2461
50~70/ML(1+4)121℃
双酚AF
注射成型
FE2462
80~100/ML(5+4)100℃
3# 、双酚AF
模压
FE2463
50~80/ML(5+4)100℃
双酚AF
模压、挤出
FE2701
70~110/ML(5+4)100℃
有机过氧化物
模压、挤出
FE2311
-
-
模压
FE246D
-
3#
胶浆、涂刷
四、结语
以上,本文就FKM配合技术的进展进行了介绍。尽管涉及到的问题主要是与生胶本身的结构和特性有关,但通过与其它橡胶(NBR、VMQ、ACM等)共混及选用新型功能性材料等手段,在配合上加以改善也是有效的。
FKM是具市场发展潜力的一种高性能弹性体材料,但从基础研究到应用研究在技术上与国外相比还有较大的差距。其主要表现在以下几个方面:
(1)生胶品种少。是耐低温、耐碱性、耐强氧化剂、耐含甲醇汽油性、可有机过氧化物硫化、低粘度等胶种的开发;
(2)配合技术落后。由于原材料品种单一,可选择的余地较小,所以定型的胶料配方并不多;
(3)加工技术及设备急待改进。由于实现注射成型加工,所以产品质量稳定性差、生产效率也比较低;
(4)科研经费不足。FKM有不少重要的课题急待研究和开发,但遗憾的是因经费问题而有许多高级技术人员只能无奈地从事着与操作工同样的搬模具的工作;
(5)人才断层。随着科研体制、分配体制的变化,自1985年以后,就已经出现了人才脱节、断层的现象。是近几年,这一问题尤为突出,甚至有不少年青的、高学历的技术人员,目前还在重复着70-80年代已经完成的基础性研究课题的工作,这样不仅造成了人力、财力和资源的大浪费,而且对人才培养、技术都是不利的。
因此,期望管理层或有识之士能够关注我国有机氟工业的发展,尽快缩小与国外公司(杜邦、3M、大金等)在技术上的差距,因为我们拥有自己的技术和材料,是在国防高科技领域应用的技术和材料。当然,FKM的制造厂家、加工厂家与用户的密切配合也是重要的。