定西氟橡胶包金属底涂剂性价比高的牌子
特殊环境下的应用挑战
航天领域要求胶水在-55℃至230℃极端温度循环(100次)后仍保持密封性;深海设备需耐受70MPa静水压且防微生物附着;核电站用胶水要抗γ射线辐照(累计剂量>100kGy)。这些场景推动特种配方发展:添加聚酰亚胺纤维可提高高温尺寸稳定性;含氟硅烷的配方能抵抗高压渗透;苯基氟橡胶基胶水具有最优的耐辐照性。此类特种胶水价格可达常规品10倍以上,但能解决关键设备的"卡脖子"密封问题。
本标准规定了热硫化氟硅橡胶生胶产品的性能要求、试验方法、检验规则以及标志、包装、运输和贮存。本标准适用于以1,3,5-三甲基-1,3,5-三(三氟丙基)环三硅氧烷为主要原料,经本体聚合制得的分子量为60-120万及120万以上的的热硫化氟硅橡胶生胶。
定西氟橡胶包金属底涂剂性价比高的牌子
氟橡胶是指主链或侧链的碳原子上含有氟原子的一种合成高分性体,它不仅具有较好的力学性能,而且有很高的耐高温、耐油及耐多种化学品侵蚀的特性,综合性能,所以它的应用范围广泛,尤其大量用于密封制品的生产,是现代航空、、火箭,宇宙航行等科学技术及其他工业(如汽车)方面的材料。
1· 氟橡胶的结构特点和应用领域
由于聚烯烃类氟橡胶(26 型氟橡胶,23 型氟橡)和亚硝基氟橡胶中,主链上都没有不饱和的C=C 键结构。减少了由于氧化和热解作用在主链上产生降解、断链的可能。偏氟乙烯中亚甲基基团对聚合物链的柔软性起着相当重要的作用,例如氟橡胶23-21 和氟橡胶23-11 是分别由偏氟乙烯和三氟氯乙烯按7 ∶3 和5 ∶5 的比例组成,显然,前者比后者柔软。
无论是偏氟乙烯和三氟氯乙烯,或者前者和六氟丙烯的共聚物以及它们和四氟乙烯的三聚物,都可以是以晶态为主或无定形态为主。这取决于当一个单体为共聚物的主要链段时,另一个单体介入的含量。电子衍射研究指出,在偏氟乙烯链段中六氟丙烯摩尔分数达7%,或者在三氟氯乙烯的链段中偏氟乙烯的摩尔分数达16%时,这两种共聚物仍具有和其相当的均聚物的晶体结构。但是,当前者的六氟丙烯摩尔分数增加到15%以上,或者后者的偏氟乙烯摩尔分数增加到25%以上时,晶格就被大幅度破坏,导致它们具有橡胶性能为主的无定形结构。这是由于第二单体引入量的增加,破坏了其原有分子链的规整性。氟橡胶可以与丁腈橡胶、丙烯酸酯橡胶、乙丙橡胶、硅橡胶、氟硅橡胶等并用,以降低成本,改善物理机械性能和工艺性能。
的氟橡胶为1948 年美国DuPont 公司试制出的聚-2-氟代-1,3-丁二烯及其与苯乙烯、丙烯等的共聚体,其性能并不比氯丁橡胶、丁橡胶突出,而且价格昂贵,没有实际工业价值。20世纪50 年代后期,美国Thiokol 公司开发了一种低温性能好、耐强氧化剂(N2O4)的二元亚硝基氟橡胶。氟橡胶开始进入实际工业应用。中国从1958 年开始也开发了多种氟橡胶,主要为聚烯烃类氟橡胶,如23 型、26 型、246 型以及亚硝基类氟橡胶;随后又发展了较新品种的四丙氟橡胶、全氟醚橡胶、氟化磷橡胶。这些氟橡胶品种都首先以航空、航天等工配套需要出发,逐步推广应用到民用工业部门,已应用于现代航空、、火箭、宇宙航行、舰艇、原子能等技术及汽车、造船、化学、石油、电讯、仪器、机械等工业领域。
氟橡胶在日常生活中的应用领域广泛,譬如在汽车配件、航空与航天领域、机械密封、泵、反应器、搅拌器、压缩机外壳、阀、各类仪表和其它设备上用作阀座、阀杆的填料,隔膜和垫片,以及在橡胶板行业、半导体制造行业和食品与制等行业都很发挥其作用。
随着无铅汽油和电喷装置等在汽车上使用,燃油胶管的结构和材料变化很大,内胶层已用氟橡胶来代替丁腈橡胶,为了降低燃油渗透和进一步改进耐热性,内胶层多采用复合结构,即由氟橡胶和氯醇橡胶或丙烯酸酯橡胶组成,由于氟橡胶价格比较昂贵,因此氟橡胶层比较薄,厚度约为0.2~0.7 mm。这种结构燃油胶管已成为国外的主流产品。我国也已开发出这种氟橡胶为内层的胶管,并在桑塔纳、奥迪、捷达、富康等型号的轿车上使用。在技术含量较高的汽车发动机、变速箱、汽门油封方面,所选用的材料主要是氟橡胶、氢化丁腈橡胶等。氟橡胶和硅橡胶复合油封已成为的发动机曲轴油封。装卸车液压系统和大型装卸车液压系统连续工作时间长,油温及机件温度上升很快,普通橡胶不能满足其工作要求,而氟橡胶制品凭其优良的耐温性能,能满足各种苛刻的技术要求。伴随着汽车工业对性、性等要求的不断提升,氟橡胶在汽车行业中的需求量也呈现出迅速增长趋势。除汽车工业应用以外,氟橡胶密封件被应用在钻井机械、炼油设备、天然气以及电厂脱硫装置上,可以同时承受高温、高压、油类和强腐蚀介质等苛刻条件;在化工生产中氟橡胶密封件被用在泵、设备容器之中,用于密封无机酸、有机物等化学物质。在石油和化学工业中氟橡胶密封产品用于机械密封、泵、反应器、搅拌器、压缩机外壳、阀、各类仪表和其它设备上,如通常用作阀座、阀杆的填料,隔膜和垫片。氟橡胶更是现代航空、、火箭、宇宙航行、舰艇、原子能等科学技术的高性能材料之一,近些年在航空和航天领域中,氟橡胶新产品不断地开发出来。
2· 氟橡胶的主要性能
氟橡胶具有的性能,其硫化胶各项性能分别叙述如下。
(1)耐腐蚀性性能:氟橡胶具有的耐腐蚀性能。一般说来它对有机液体(燃料油、溶剂、液压介质等)、浓酸(硝酸、硫酸、盐酸)、高浓度过氧化氢和其他强氧化剂作用的稳定性方面,均优于其他各种橡胶。
(2)耐溶胀性能:氟橡胶具有高度的化学稳定性,是目前弹性体中耐介质性能一种。26 型氟橡胶耐石油基油类、双酯类油、硅醚类油、硅酸类油,耐无机酸,耐多数的有机、无机溶剂、品等,仅不耐低分子的酮、醚、酯,不耐胺、氨、氢氟酸、、磷酸类液压油。23 型氟胶的介质性能与26 型相似,且更有之处,它耐强氧化性的无机酸如发烟硝酸、浓硫酸性能比26 型好,在室温下98%的HNO3中浸渍27 天它的体积膨胀仅为13%~15%。
(3)耐热和耐高温性能:在耐老化方面氟橡胶可以和硅橡胶相媲美,优于其他橡胶。26 型氟橡胶可在250 ℃下长期工作,在300 ℃下短期工作,23 型氟橡胶经200 ℃×1 000 h 老化后仍具有较高的,也能承受250 ℃短期高温的作用。四丙氟橡胶的热分解温度在400 ℃以上,能在230 ℃下长期工作。氟橡胶在不同温度下性能变化大于硅橡胶和通用的丁基橡胶,其拉伸强度和硬度均随温度的升高而明显下降,其中拉伸强度的变化特点是:在150 ℃以下,随温度的升高而迅速降低,在150~260 ℃之间,则随温度的升高而下降较慢。
氟橡胶的耐高温性能和硅橡胶一样,可以说是目前弹性体中。26-41 氟胶在250 ℃下可长期使用,300 ℃下短期使用;246 氟胶耐热比26-41 还好。在300 ℃×100 h 空气热老化后的26-41 的物性与300 ℃×100 h 热空气老化后246 型的性能相当,其扯断伸长率可保持在99%左右,硬度90~95 度。246 型在350 ℃热空气老化16 h之后保持良好弹性,在400 ℃热空气老化110 min之后保持良好弹性,在400 ℃热空气老化110 min之后,含有喷雾炭黑、热裂法炭黑或碳纤维的胶料伸长率上升约1 /2~1 /3,强度下降1 /2 左右,仍保持良好的弹性。23-11 型氟胶可以在200 ℃下长期使用,250 ℃下短期使用。
(4)耐低温性能:氟橡胶的低温性能不好,这是由于其本身的化学结构所致,如23-11 型的Tg >0 ℃。实际使用的氟橡胶低温性能通常用脆性温度及压缩耐寒系数来表示。胶料的配方以及产品的形状(如厚度)对脆性温度影响都比较大,如配方中填料量增加则脆性温度敏感地变坏,制品的厚度增加,脆性混同度也敏感地变坏。氟橡胶的耐低温性能一般它能保持弹性的限温度为-15~20 ℃。随着温度的降低,它的拉伸强度变大,在低温下显得强韧。当用作密封件时,往往会出现低温密封渗漏问题。其脆性温度随试样厚度而变化。例如26 型氟橡胶在厚度为1.87 mm时,其脆性温度是-45 ℃,厚度为0.63 mm 时是-53 ℃,厚度为0.25 mm 时是-69 ℃。它的标准试样26 型氟橡胶的脆性温度是-25~-30 ℃,246 型氟橡胶的脆性温度为-30~-40 ℃,23 型氟橡胶的脆性温度为-45~-60 ℃。
(5)耐过热水与蒸汽的性能:氟橡胶对热水作用的稳定性不仅取决于本体材料,而且决定于胶料的配合。对氟橡胶来说,这种性能主要取决于它的硫化体系。过氧化物硫化体系比胺类、双酚AF 类硫化体系为佳。26 型氟橡胶采用胺类硫化体系的胶料性能较一般合成橡胶如乙丙橡胶、丁基橡胶还差。
(6)压缩变形性能:氟橡胶用于高温下的密封中压缩变形是它的关键性能。维通型氟橡胶所以得到其广泛的应用是与它的压缩变形的改进分不开的。它是作为密封制品控制的一个重要性能。26 型氟橡胶的压缩变形性能较其他氟橡胶都好,这是它之所以获得广泛应用的原因之一。在200~300 ℃的温度范围内其压缩变形显得很大。但在20 世纪70 年代美国DuPont 公司对其进行了改进,发展了一种低压缩变形胶料(Viton E-60C),它是从生胶品种(Viton A 改进为Viton E-60)和硫化体系选择上(从胺类硫化改进为双酚AF 硫化)进行改进的,这就使氟橡胶在200 ℃高温下长期密封时的压缩变形性较好,氟橡胶在149 ℃长期存放的条件下,其密封保持率在各类橡胶中处于的。
(7)耐气候老化和耐臭氧性能:氟橡胶具有的耐天候老化性,耐臭氧性能。据报道,DuPont 开发的VitonA 在自然存放10 年之后性能仍然令人满意,在臭氧体积分数为0.01%的空气中经45 天作用没有明显龟裂。23 型氟橡胶的耐天候老化、耐臭氧性能也。
(8)机械性能:氟橡胶一般具有较高的拉伸强度和硬度,但弹性较差。26 型氟橡胶一般配合的在10~20 MPa 之间,扯断伸长率在150~350%之间,抗撕裂强度在3~4 kN /m 之间。23 型氟橡胶在15.0~25 MPa 之间,伸长率在200%~600%,抗撕裂强度在2~7 KN/m 之间。一般地,氟橡胶在高温下的压缩变形大,但是如果以相同条件比较,如从150 ℃下的同等时间的压缩变形来看,丁和氯丁橡胶均比26 型氟胶要大,26 型氟橡胶在200 ℃×24 h 下的压缩变形相当于丁橡胶在150 ℃×24 h 的压缩变形。
(9)电性能:氟橡胶的电缘性能不是太好,只适于低频低压下使用。温度对它的电性能影响很大,从24 ℃升到184 ℃时,其缘电阻下降35 000 倍。26 型氟橡胶的电缘性能不是太好,只适于低频,低电压场合应用。温度对其电性能影响很大,即随温度升高,缘电阻明显下降,因此,氟橡胶不能作为高温下使用的缘材。填料种类和用量对电性能影响较大,沉淀碳酸钙赋予硫化胶较高的电性能,其他填料则稍差,填料的用量增加,电性能则随之下降。
(10)耐高真空性能:氟橡胶具有的耐真空性能。这是由于氟橡胶在高温、高真空条件下具有较小的放气率和小的气体挥发量。26 型、246 型氟橡胶能够应用于133×l0-9~133×10-10 Pa 的超高真空场合,是宇宙飞行器中的重要橡胶材料。氟橡胶的气透性是橡胶中较低的,与丁基橡胶、丁腈橡胶相近。填料的加入能使硫化胶的气透性变小,其中的效果较中粒子热裂法炭黑(MT)显著。氟橡胶的气透性随温度升高而增大,气体在氟橡胶中的溶解度较大,但扩散速度则很小,这有利于在真空条件下应用。氟橡胶对气体的溶解度比较大,但扩散速度却比较小,所以总体表现出来的透气性也小。据报道,26 型氟橡胶在30 ℃下对于氧、氮、氦、二氧化碳气体的透气性和丁基橡胶、丁橡胶相当,比氯丁胶、天然橡胶要好。在氟橡胶中,填料的加入,充填了橡胶内部的空隙,从而使硫化胶的气透性变小,这对于真空密封是很有利的。
(11)耐燃性能:橡胶的耐燃性取决于分子结构中卤素的含量。卤素含量愈多,耐燃性愈好。氟橡胶与火焰接触能够燃烧,但离开火焰后就自动熄灭,所以氟橡胶属于自熄型橡胶。
(12)耐辐射性能:氟橡胶是属于耐中等剂量辐射的材料。高能射线的辐射作用能引起氟橡胶产生裂解和结构化。氟橡胶的耐辐射性能是弹性体中比较差的一种,26 型橡胶辐射作用后表现为交联效应,23 型氟橡胶则表现为裂解效应。246 型氟橡胶在空气中常温辐射在5×107 仑的剂量下性能剧烈变化,在1×107 仑条件下硬度增加1~3,强度下降20%以下,伸长率下降30%~50%。所以,一般认为246 型氟橡胶可以耐1×107 仑,限为5×107 仑。
3· 氟橡胶的加工技术
高分子合成材料的氟橡胶合成技术并不是难的,关键之处在于氟橡胶的改性和加工技术。随着科技发展,国内外开发多种类型的氟橡胶,主要是通过改变聚合单体来实现氟橡胶的不同组成和性能。除单体组成外,加工过程中的硫化体系是决定氟橡胶物理性能的关键因素之一。目前已开发出的硫化体系有3 种:分子中含有2 个氨基的二胺化合物、含有2 个羟基的多元醇化合物、过氧化物及多官能化合物。其中,使用广泛的是多元醇硫化体系,所使用的多元醇只限于双酚AF。与传统的二胺硫化体系相比,多元醇体系具有压缩变形小和抗焦烧性高两大优点。过氧化物硫化体系中的交联点含有更稳定的C—C键,因此其硫化胶的耐化学品的腐蚀性能更加。此外,含有醚的单体耐寒级氟橡胶,由于要从偏氟乙烯键上脱除氟化氢,所以采用过氧化物来进行硫化。
(1)氟橡胶的配方一般是由生胶、吸酸剂、硫化剂、促进剂、补强填充剂、加工助剂等组成。国产氟橡胶和国外的氟橡胶的性能基本相同,只是加工性能有些差异。国产胶的加工性能较差,主要是穆尼粘度较高,影响胶料加工流动性。国产氟橡胶26 相当于美国杜邦公司的VitonA,氟橡胶246 相当于VitonB。国外的氟橡胶生胶,有不少已加好了硫化剂,美国3M 公司和日本大金公司供应的氟橡胶已经加好了硫化剂。
(2)硫化是使氟橡胶产生一定程度的交联,使其具有良好的使用性能。氟橡胶硫化可以采用亲核试剂的离子加成机理进行,也可以以过氧化物或射线以自由基机理进行。胺类化合物(1 号、3 号硫化剂)硫化氟橡胶,可以解决一般产品的要求;采用2 号硫化剂,可以解决胶浆的加工。在密封制品中,为使其有较小的压缩变形值,应优先选用酚类化合物作为硫化剂。如对苯二酚、双酚A、双酚AF 等,并配用相应的促进剂,以适合高层次的性能要求。在解决腐蚀介质的抗耐性上,建议采用过氧化物硫化氟橡胶。
(3)吸酸剂也称为稳定剂,是为了解决氟橡胶加工过程产生氟化氢对金属的腐蚀和污染,使硫化反应顺利进行。Ca(OH)2等。一般采用MgO、CaO、ZnO、PbO、二盐基亚磷酸铅,其用量一般在5~10 份。它们的加入各有特点:MgO 耐热性好;PbO 耐酸性好;CaO 压缩变形小;对消除气泡有利;ZnO 和二盐基亚磷酸铅,胶料流动性得到改善,耐水性好;Ca(OH)2压缩变形小,加入Ca(OH)2和活性MgO,在酚类硫化体系中,可得到低压缩变形的胶料。总之,要选择合适的吸酸剂,以满足实际性能的要求。
(4)氟橡胶是一种自补强性能的橡胶。由于性能要求和用途的不同,需要通过补强、填充体系进行调节,使其功能和成本适应用户的需要,一般用量在10~30 份之间。目前常用的补强填充剂大致上有热裂法炭黑、喷雾碳黑、白炭黑、硫酸钙、、氧化钙、炭纤维等。用加拿大的N990 炭黑或喷雾碳黑,在黑制品中均取得较好的加工工艺和相应的物理性能。加入20 份炭纤维的氟橡胶,胶料流动性好,加工硫化复杂形状产品之后,其外观好于N-990 和喷雾碳黑,表面光滑。由于炭纤维的胶料导热系数大,适合高速运动橡胶件的使用。应该指明的是,加入碳纤维的成本高,其伸长率低。彩氟橡胶制品可以使用白炭黑、钛白、氟化钙、碳酸钙等,并配用相应的颜料即可得到相应的胶料。但在加工压缩型密封制品时,在选用彩原料时,要注意颜料与高温的合理匹配,还要控制胶料的压缩变形值,以使产品适应压缩下的工作需要。
(5)加工助剂是近年来氟橡胶加工的一大进步。它是在不影响胶料发挥的前提下,能改善氟橡胶的混炼工艺,焦烧,改进胶料的流动性和压出性能,并能在加工中粘辊、粘模,起到外脱模剂的作用。在氟橡胶的加工中,已出现过氟蜡、低分子聚乙烯、硬脂酸锌、Ws280、棕榈蜡、模特丽935P 等新的加工助剂,为氟橡胶的加工和应用提供了新的手段。它的加入量一般只有1~2 份。
硫化剂加入量及其作用因为硫化体系、氟橡胶类型不同而有所不同,目前国内外主要采用多元醇硫化体系。增塑剂,国内通常使用硬脂酸盐或低相对分子质量氟橡胶。当胶料用量大,自动化程度高的挤出或注塑模压过程中,容易发生焦烧,同时需添加一定量的防焦剂。通常选用对硝基、对硝基苯甲酸、邻羟基苯甲酸和防焦剂NA。促进剂,使用多元醇硫化体系要求促进剂既要在混炼和加工阶段有较好的焦烧性能,又要具有较快的硫化速率。
(6)改性。尽管氟橡胶具有许多的性能,但也存在模压流动性差、易压缩变形、生胶加工工艺性能和硫化胶的物理性能不好等不足。为了解决氟橡胶的流动性,可以采用高相对分子质量和低相对分子质量氟橡胶合用,也可通过工艺调整,生产出宽相对分子质量分布的氟橡胶。为解决氟橡胶的压缩变形性能,可通过添加硫化的交联剂、促进剂和耐热助剂的方法使氟橡胶获得低的压缩变形性,从而解决并提高氟橡胶的物理机械性能。另外,还有采取添加无机填料的方式来对氟橡胶进行改性。
丙烯酸酯橡胶是氟橡胶或丙烯酸酯橡胶与丙烯酸酯塑料共混形成的新型热塑性弹性体。丙烯酸酯橡胶主要用于汽车工业而被称之为“汽车胶"。氟橡胶也主要应用于汽车。因此将氟橡胶与价格相对较低的丙烯酸酯橡胶共混,可以在性能不下降的前提下显著降低生产成本。含环氧化物硫化点的丙烯酸酯橡胶通过偶-偶相互作用,与氟橡胶形成可混溶的共混胶,从而改善了共混胶的力学性能。
4· 应用实例
4.1 耐油FKM 混合料
氟橡胶材料密封件适用于要求高热温和高化学稳定性的环境。针对高添加剂、润滑剂等环境,MOK 研制出了的FKM 混合物。在选择密封件适用材料时,除考虑密封件所处温度范围外,还需考虑与之接触的液体或气体性质。弹性体的膨胀或收缩以及化学稳定性都是影响密封件稳定性的重要因素。
这些材料可以耐受高达200 ℃的温度,取决于聚合物结构和交联作用系统。二胺、双酚或过氧化物会产生交联作用。氟含量决定化学稳定性,氟含量越高,FKM 材料就越能够耐受高度侵蚀性的环境。
对于公共车辆和移动式机械,密封材料需要满足对温度和周围介质为苛刻的应用条件。由于高机油添加剂含量以及工作温度的日益升高,温度和化学稳定性的要求越来越严格。MOK 为动力应用研制的低温混合剂70FKM8086和70FKM2010122具有良好的膨胀特性、抗磨蚀度和缓冲性能。材料70FKM2010122 适用于生物柴油或低粘度润滑剂。发动机和驱动器的新一代长寿油可将使用寿命延长一千多小时。这类油液主要是矿物油,胺添加剂含量高。
4.2 耐碱FKM 材料
耐碱型FKM 材料用于轴和驱动器的标准FKM材料采用双酚交联共聚物或三聚物,会受到这些高添加剂油的化学损伤腐蚀。正是基于这一原因,耐碱型(BRE)FKM 材料面世了。这种材料在高添加剂油中具有高度稳定性。将材料75FKM2010128在150 ℃高温下与侵蚀性CastrolSAF XO 机油接触168 h 后,其机械特性只发生了轻微变化,而标准FKM 材料在同一条件下断裂点延长率降低50%以上,大大影响了密封件的功能性。新型高性能材料75FKM2010128 在侵蚀性长寿机油中试运行即使超过1 000 h,仍能保持良好的密封性。因此,新型BRE-FKM 材料在侵蚀性润滑剂中具有耐久性以及更长的使用寿命。MOK 生产多个FKM 材料系列,从标准型号到具有耐化学性的改性混合材料,一直到适用于动力应用的低温弹性材料,以及优化后具有长寿耐磨特性的75FKM2010129 材料。
由于氟橡胶的技术性能,因而其应用领域不断拓展,制品类型越来越多,主要制品有胶布、胶带、胶管、薄膜和浸渍制品用氟橡胶制造各种胶管及复合胶管,用于输油管、耐高温和高压的液压胶管、空气导管和热液体导管以及各种密封材料。用氟橡胶制造胶膜作耐腐蚀介质的泵、阀中的隔膜,广泛用于的领域。用氟橡胶的浆料涂于玻璃纤维布、聚酯纤维布和其他纺织品上,可制成耐燃容器、耐高温垫片、不燃性胶布、防护衣及防护手套等。缘材料主要用作耐高温、耐油和耐压的电缆和电线护套。制造石棉纸的泊板氟橡胶可取代其他橡胶制造石棉纸泊板,具有耐高温和耐高压性能,还可用作物料管的法兰垫片,广泛应用于化工、轻工和机器制造等领域。
4.3 氟橡胶制品及应用
密封材料用氟橡胶可以制成多种用途的垫圈、阀门密封垫圈、○型密封圈、V 型密封圈、皮碗、油封和波纹连接管等。这些制品能耐200 ℃以上的温度,在各类油介质的环境下不变形。氟橡胶密封材料在国内主要应用于汽车和航空航天领域,目前国内汽车零部件用氟橡胶材料的主要制品有发动机的曲轴前油封、曲轴后油封、气门缸油封、发动机膜片、发动机缸套阻水圈、加油软管、燃油软管、机油滤清器单问阀、加油口盖○型环、变速箱及减速器的油封等等。氟橡胶、硅橡胶和丙烯酸酯橡胶及耐热弹性体成为未来汽车用橡胶材料的发展趋势和主流,许多汽车零部件采用性能更为的氟橡胶来替代传统的材料。
氟橡胶密封件用于汽车发动机的密封时,可在200 ℃~250 ℃下长期工作,工作寿命可与发动机返修寿命相同;用于化学工业时,可密封无机酸(如140 ℃下的67%的硫酸、70 ℃的浓盐酸,90 ℃下30%的硝酸),有机溶剂(如氯代烃、苯、高芳烃汽油)及其它有机物(如丁二烯、苯乙烯、丙烯、、275 ℃下的脂肪酸等);用于深井采油时,可承受149 ℃和420 个大气压的苛刻工作条件;用于过热蒸汽密封件时,可在160~170 ℃的蒸汽介质中长期工作。在单晶硅的生产中,常用氟橡胶密封件以密封高温(300 ℃)下的介质—三氯氢硅、四氯化硅、砷化镓、、三氯乙烯以及120 ℃的盐酸等。
用氟橡胶制造的胶管适用于耐高温、耐油及耐特种介质场合。用氟橡胶制成的电线电缆屈挠性好,且有良好的缘性。氟橡胶制作的玻璃纤维胶布,能耐300 ℃的高温和耐化学腐蚀。芳纶布涂氟胶后,可以制作石油化工厂耐高温、耐酸碱类储罐间的连接伸缩管,可承受高压力、高温度和介质腐蚀,并对两罐的变形伸缩起缓冲减震连接作用。尼龙布涂氟胶后制成的胶布密封袋,作为炼油厂的内浮顶贮罐用软密封件,起到密封、减少油液面的挥发损失等作用。
23 型、四丙型氟橡胶主要用作耐酸、耐化学品的腐蚀性密封场合。羟基亚硝基氟橡胶主要用作防护制品和密封制品,以溶液形式作为不燃性涂料,应用于防火电子元件及纯氧中工作的部件。其溶液和液体橡胶可用喷涂、浇注等方法制造许多制品,如宇宙服、手套、管带、球等。也可用作玻璃、金属" 濑性体、织物的胶粘剂,制造海绵及接触火箭推进剂(N2O4)的垫圈、○型圈、胶囊、阀尹畴各类密封件等。G 型系列氟橡胶制作的密封件具有使用VitonA、B、E 等氟橡胶无法达到的耐高温蒸汽性、耐甲醇汽油或含高芳香烃汽油的性能;GLT 型氟橡胶、氯化磷橡胶、全氟醚橡胶等更具有宽广的使用温度范围,低温柔软性、弹性密封性等。全氟醚橡胶还具有突出的耐介质腐蚀性,在技术中得到广泛应用。用氟橡胶制成的密封剂———腻子,耐燃料油性能突出,可在200 ℃左右的油中使用,被用作飞机整体油箱的密封材料。用氟橡胶制得的闭孔海绵,具有耐酸、耐油、宽广使用温度范围和良好的缘性,可用作火箭燃料、溶剂、液压油、润滑油及油膏的密封和火箭、的减震材料,耐温达204 ℃,浸渍氟胶乳液的石棉纤维布,可制成石棉胶板,用于耐高温、耐燃烧和耐化学腐蚀性的场合。
5· 氟橡胶技术开发进程和发展趋势
自从氟橡胶问世以来,新产品开发层出不穷,目前新开发的氟橡胶品种很多,主要有聚烯烃类氟橡胶、亚硝基类氟橡胶、全氟醚橡胶和氟化磷腈橡胶等,并向高含氟、耐低温和耐碱方向发展。目前世界氟橡胶产量的60%以上用于汽车工业,氟橡胶正以优良的性能不断扩大应用领域。
5.1 新氟橡胶品种
目前,新开发的氟橡胶品种很多,主要有聚烯烃类氟橡胶、亚硝基类氟橡胶、全氟醚橡胶和氟化磷腈橡胶等,并向高含氟、耐低温和耐碱方向发展。近年来,开发的性能的品种主要有以下几种。
(1)全氟醚橡胶:是由全氟甲基乙烯基醚、四氟乙烯与全氟烯丙基醚三元共聚得到的一类弹性体,全氟醚橡胶在300 ℃的高温下也能保持橡胶的弹性特征;在耐化学性方面,一般氟化橡胶无法适用的醚类、胺基化合物、酮类、氧化剂、有机溶剂、燃料、酸、碱等环境中,全氟醚橡胶显示出其的稳定性,几乎对化学品都具有的耐受性。能耐除氟溶剂外的一切溶剂,接触过热蒸气的时间可长达1 年,在碱液中能使用3 000 h,能在260~290 ℃的温度下连续工作很长时间,是目前耐热性能橡胶。除了的耐化学性、耐热性,产品具有均质性,表面没有渗透、开裂和针孔等困扰。全氟醚橡胶密封零部件的长期功效,可以提高生产效益和减少维修费用,这些特征可以提高密封性能,延长运行周期,有效降低维护成本。
(2)偏氟乙烯系橡胶:偏氟乙烯在大于它的临界温度和临界压力时能发生高放热的聚合反应。偏氟乙烯树脂主要作为加工性能好的耐蚀材料,用于对防蚀有要求的装置、机器的防腐,有效地利用其物理和化学特性,作为装置零部件甚至整个工厂的工业材料,所做出的成绩遍及各个行业。因为其加工性能,以容易成型、熔接涂装、衬里获得好评。偏氟乙烯系橡胶耐热性能,耐候性、耐臭氧性、耐油性和耐化学性能均很好,主要用于苛刻条件下的○型密封圈、密封材料和垫片等工业用零件。
(3)聚氟代烷氧基磷腈弹性体(简称磷腈氟橡胶):含氟量低(30%~40%),对许多化学介质有的耐受能力,可以在170 ℃温度下长期工作,并具有良好的物理机械性能和宽广的使用温度范围,的耐低温性能,温度可达-230 ℃,性能类似于硅橡胶和其他氟橡胶,但能弥补硅橡胶机械强度低和氟橡胶耐低温性能差的特点,其拉伸强度为7~14 MPa,较耐磨,是一种新型具有低温挠性的耐溶剂聚合物。
(4)四丙氟橡胶:由四氟乙烯与丙烯共聚得到的弹性体。具有的耐高温(200 ℃以上)和耐油性能。四丙氟橡胶是四氟乙烯与丙烯通过乳液聚合生成的共聚物。四丙氟橡胶可在200 ℃下连续使用,使用温度可达230 ℃。四丙氟橡胶在200 ℃下连续使用寿命可达2 年。它具有耐高温和耐腐蚀性能,使用寿命较长,主要用于制造各种密封制品,如轴封、密封圈、○型密封圈,隔膜和防腐蚀衬里。
(5)不需硫化的氟化橡胶:具有氟橡胶的弹性和氟树脂优良的耐介质性能,在加热的情况下,与塑料加工工艺相同,可进行熔融、挤出、注射及模压加工,加工十分方便。高含氟橡胶适用于钢铁加工业用的耐溶剂洗涤辊、化工的挠性管接头、热交换器的密封材料、○型密封圈和燃料电池密封件等。G-555 适用于汽车燃料管、排气管,也可挤出成胶绳、胶条或胶片硫化后再进行裁断、粘接成大型○形密封圈及衬垫。
(6)高纯氟橡胶:污染小,主要用于液晶半导体制造。普通级产品耐磨性能,低磨擦产品具有较好的耐磨擦性能,具有的纯度和耐等离子性能。液体氟弹性体由日本的信越公司开发,品牌主要有两类,可在150 ℃下加工,具有优良的耐油、耐溶剂和耐低温性能(在-40 ℃下仍有弹性)。
5.2 氟橡胶技术开发趋势
限度提高单体纯度是提高聚合物性能的重要手段。通过采用新工艺技术,偏氟乙烯、全氟丙烯和四氟乙烯单体纯度得到大提高。为改善氟橡胶的耐低温性、耐介质以及和加工性能,采用含全氟烷基烯醚、硅氧烷、亚硝基、含溴氟醚等改性基团的单体,开发出多种新型聚合单体,从而制得多种高性能特种氟橡胶产品。
氟橡胶生产技术发展趋势为改进间歇单釜聚合为连续双釜聚合,产量大,工艺和产品质量稳定。采用的相对分子质量分布控制技术,改变多年来的较宽相对分子质量分布为双峰分布;控制相对分子质量大小,降低生胶穆尼粘度值,满足挤出加工和复杂制件的浇铸成型的需要。近年来,杜邦和苏威公司开发了由可控聚合反应代替了常规的随机官能团共聚反应的新聚合工艺。
根据工艺类型,可控性聚合反应用来改进和控制聚合物结构,从而取代通过常规官能团聚合反应生成的共聚物。
国外大多数商用氟橡胶的供应采用预混胶形式,采用双酚硫化体系可降低制品的压缩变形。过氧化物硫化体系可以提高制品的耐油、耐水蒸汽性能。生产用过氧化硫化的氟橡胶时,可在聚合物主链上加入一种带硫化点的单体,改善其加工性能,以达到的要求。针对氟橡胶工艺复杂,技术难度大的特点,各生产厂商竞相提高装备自动化水平,采用现代检测技术,实现单体制备、聚合生产和炼胶等工艺参数的微机控制,做到密闭化、连续化,产品质量优良。
在实际应用中,针对苛刻的环境,开发了耐高低温性能范围更宽的、耐热水(水蒸汽)、耐含醇燃料、耐化学品性好的氟橡胶新品种,满足了工况的需要。氟橡胶发展至今已经形成系列多品种的特种橡胶。目前新型高性能的氟橡胶产品仍不断被开发出来。
6 ·结束语
中国氟橡胶企业不能继续走简单扩产而不重视提高产品技术含量和品质的老路。大力发展氟橡胶产业关系到国计民生、国家,提高氟橡胶的自给能力已是当务之急。
中国企业作为技术跟随者,在引进生产线和生产技术的基础上,应当做好消化吸收工作,积进行回输;分析外国公司的布状况,充分利用其无权和无效,避开其有效的技术;借鉴国外企业的布经验,在自己的优势领域或者对方的弱势领域及技术空白点上构建结构合理的群,形成具有自身特的组合,运用策略保护自己的市场利益。
我国氟橡胶合成技术领域的研发实力和技术水平与美国、日本、欧洲的企业相比差距较大,存在较大的上升和提高空间,因此应重点扶持企业在部分技术上形成突破。国内氟橡胶生产企业应在提高生产技术水平和产品质量与应用上下功夫,加大特种单体、合成技术工艺、硫化工艺、硫化体系、产品形态开发的力度,加快开发耐低温氟橡胶、耐高温氟橡胶、宽温域氟橡胶等新的氟橡胶品种,提升综合竞争力。
定西氟橡胶包金属底涂剂性价比高的牌子
使用过氧化物为硫化剂,对于硫化部位,需要利用碘或溴,通常采取与含碘或溴的单体共聚,或通过氟烷基碘化物链转移剂将其导入。过氧化物硫化比多醇硫化得到的产品耐油性,因此在三元体系中使用较多。作为硫化助剂,三烯丙基三聚氰酸酯等不饱和多功能团化合物十分必要。另外,若将溴定为硫化部位,则金属氧化物也是的( ZnO 等)。
而使用二胺化合物(六亚甲基二胺的氨基甲酸盐等)作为硫化剂,可以值得高机械强度的橡胶产品。但因其硫化性、稳定性及永久变形较差等问题,该硫化方法使用的不多。作为受氧剂, MgO 为必要成分。
1.3 产品性能及加工成型
FKM 橡胶耐热、耐油、耐燃油性能,但耐寒性还有待提高。该橡胶的性能与含氟量密切先关:含氟量增加,耐油性提高但耐寒性和永久压缩变形性明显降低。有机过氧化物硫化系具有较好的耐久性,且因没有添加碱性物质,耐胺性优良。
根据不同的用途, FKM 常配合不同填充剂和添加剂进行混炼。采用与其他橡胶相同的成型方法,如模具成型、挤出成型等。粘结方法则是在被粘接物上涂上底漆(如要求要耐热性用途时可用硅烷偶联剂) ,再在进行硫化时将氟橡胶粘结在底漆上。
1.4 用途及展望
目前,FKM 的用途主要集中于与汽车部件相关的应用领域,随着汽车性能逐步提高,未来,由耐热耐油性能的氟橡胶代替丙烯酸酯系橡胶及硅橡胶已成为这一领域的趋势。
2 四氟乙烯 / 丙烯系橡胶( TFE-P)
TFE-P 是四氟乙烯与丙烯交替聚合物为基的橡胶, 该材料除具有氟橡胶的性能外, 还兼具高电气缘及耐品性等 FKM 不具备的特性。
2.1 合成方法
TFE-P 系橡胶在工业上采取乳液聚合实施方法, 以过硫酸钾或过硫酸铵为引发剂, 在反应体系达到一定压力时加入原料进行反应。将这样得到的乳液用无机盐凝聚,清洗干燥后得到氟橡胶。合成步骤与 FKM 类似。
2.2 硫化方法
对于 TFE-P 系橡胶而言,二元系橡胶中用过氧化物硫化,三元系橡胶中用过氧化物硫化以及多醇硫化。
过氧化物硫化使用有机过氧化物作为硫化剂使用,与 FKM 不同的是,硫化部位不用溴和碘,因而更适合于医疗食品领域的应用。
三元系橡胶中有 VDF,多醇硫化也是可行的。硫化机理与 FKM 多醇硫化类似,但硫化反应活性稍低(这正是其耐化学品性的原因),因而需要使用的铵盐作为硫化促进剂。
由于二元系橡胶缘性能号,可用于制造电线,因此可以通过电子射线辐射的方法对其进行交联。
2.3 产品性能及加工成型
该橡胶具有的电缘性和耐品性。氟含量低于 FKM 却具有高的分解温度。耐溶剂性优良,溶于四氢呋喃,而在低性溶剂中发生溶胀。对胺系添加剂的高性能引擎油耐久性好,密度较低,催化温度为 -40℃。
TFE-P 系橡胶的成型加工中,混炼、成型、硫化、粘结等采用与其他橡胶相同的方法进行。电线成型时,可将橡胶被覆到芯线上后用有机过氧化物硫化。为了补强,还可将耐热、耐溶剂性好的乙烯 -四氟乙烯共聚物树脂熔融共混后再辐射交联。
2.4 用途及展望
TFE-P 系橡胶由于其的电气性能,主要用于耐热电线,处在其他橡胶取代的位置。另外,随着高性能化引擎油的大规模使用, FKM 将应付其中的胺类添加剂,而耐寒性良好的三元系 TFE-P 橡胶将有望解决此类问题。
3 全氟橡胶
一般的氟橡胶聚合物中含有大量碳氢集团,在化学品腐蚀及其它严苛的条件下容易劣化。四氟乙烯与全氟烷基乙烯醚共聚所得的氟橡胶中氢原子被氟原子取代,因而具有优良的耐热、耐腐蚀性能。
3.1 合成方法
全氟橡胶的制造工业上依然采用乳液聚合方法。得到的产品具有全氟结构,硫化部位也具有与聚合物相同的耐热耐腐蚀性。四氟乙烯-全全氟烷基乙烯醚共聚物中,全氟碳氰化物基团少量聚合进入共聚物作为硫化部位。利用全氟烷基碘化物作为链转移及也可适当引入硫化部位。
3.2 硫化方法
与其它氟橡胶一样,加入填充料、硫化剂、硫化促进剂等混合后硫化。以四苯基锡作为催化剂,硫化过程中氰基形成了三聚体的三嗪环。此法硫化速度慢,难成型。
以碘为硫化部位的硫化方法较全氟氰基硫化法硫化性好, 但有机过氧化物与硫化助剂中的碳氢化合物部分有可能进入聚合物结构。
3.3 产品性能及加工成型
全氟橡胶是合成橡胶中耐溶剂性能好的一种,仅对氟利昂有较小程度的溶胀,但永久压缩变形性较其他橡胶要差得多。其耐热性和耐寒性因工具单体及硫化方法的不同有所差别:如六氟甲基乙烯基醚( PMVE)共聚橡胶耐热性好, Tg 高,耐寒性较差;长链全氟烷基乙烯醚共聚的橡胶耐寒性好但耐热性较 PMVE 差。
全氟橡胶的成型加工基本上可采用与其他氟橡胶相同的方法,但由于其硫化性能差,因而难成型。
3.4 用途及展望
目前,全氟橡胶主要发挥其耐化学腐蚀的特性,作为半导体产业密封材料以及化学、是有化学工厂中的密封材料。该材料应用受到限制的大原因便是材料价格太高,如何在改良其加工成型性能和压缩永久变形是未来重要的课题。
4 氟硅橡胶( FVMQ )
氟硅橡胶主链上有硅氧键,侧链上有三氟烷基,耐热及耐寒性能优良,可使用温度范围宽。
4.1 合成方法
氟硅橡胶是采用本体聚合,用环状硅氧烷开环聚合合成的。碱性催化剂作用下,一般用三氟丙基甲基硅氧烷聚合制得,中和催化剂停止反应。用有机过氧化物硫化,因而可共聚入少量甲基乙烯基硅氧烷作为硫化部位。采用低分子量直链硅氧烷作为链转移剂调节分子量。市售氟硅胶的分子量从数万到数十万范围不等。
4.2 硫化方法
氟硅橡胶的硫化方法有两类:过氧化物硫化和常温固化。
过氧化物硫化时,硫化部位是共聚物中反应活性高的乙烯基(甲基乙烯基硅氧烷中) ,因此硫化速度快,不需要硫化促进剂。
常温固化是基于硅烷醇缩合的硫化形式。锡催化剂作用下,空气中的水分将固化剂水解成硅烷醇,与聚合物末端的硅烷醇缩合达到固化效果。由于反应是从材料表面到深处发展进行的,固化时间较长。
4.3 产品性能
耐热性、耐化学品性、耐油性及机械性能较其他氟橡胶稍差,但其兼具氟与硅两者的优点。耐燃油性优秀,使用温度范围为-60℃~200 ℃,对甲醇溶胀小。
4.4 用途及展望
主要集中在以隔膜及单向阀等与燃料有关的器件为中心应用领域。
5 含氟膦腈橡胶( FPz)
FPz主链含磷与氮的耐寒氟橡胶。
5.1 合成方法
环状二氯代膦腈开环聚合,用氟烷基取代氯原子得到。
5.2 硫化方法
聚合物中导入少量不饱和基用以作为硫化部位,可用过氧化物或放射线硫化。
5.3 用途及展望
含氟膦腈橡胶的使用温度范围为 -60℃~170℃,温度依赖性小,在宽温度范围内能保持良好的稳定性,常用于军事、宇宙、航空产业方面耐燃油的密封材料。
6 热塑性氟弹性体
氟橡胶通常需要用硫化剂及各种助剂加以混炼,成型方法复杂,因此,开发与热塑性氟弹性体十分必要。热塑性弹性体是兼有相交成分软连段和树脂成分硬链段的嵌段共聚物。共聚物中同时含有结晶性的树脂链段和柔软的橡胶链段,冷却时,由于硬段的作用,软段好似被交联起来,因而不需要硫化。
6.1 合成方法
以 Daiel TPE 为例,将作为软段的偏氟乙烯( VDF)的共聚物体系与不同品种的可作为硬段的含氟单体,用碘转移聚合(活性自由基聚合)进行嵌段共聚。
而 Cefral soft 则是先在偏氟乙烯共聚体系主链中引入过氧化基团,再进一步让过氧化基团热分解,从而将单一偏氟乙烯树脂成分接枝到主链上去。
6.2 用途及展望
热塑性弹性体具有硫化橡胶的物理机械性能和软质塑料的工艺加工性能。由于不需再经过热硫化,因而使用简单的塑料加工机械即可制成产品。这一特点使生产流程缩短了 l/4,节约能耗 25%~40%,提率 10~20 倍。热塑性弹性体不仅可以取代部分橡胶,还能使塑料得到改性。
耐热性
氟硅橡胶的高温分解与硅橡胶一样,即:侧链氧化、主链断裂、侧链热分解和引起各种复合反应。由于分解产物也会引起主链断裂,所以耐热性通常比硅橡胶要差一些,在200℃的温度下已开始氧化老化。但通过添加铁、钛、稀土类氧化物等少量的热稳定剂便可使其获得显著的改善,即使在250℃高温下也具有的耐热性。
温度对氟硅橡胶影响比硅橡胶大,但比氟橡胶小。国外还研究了氟硅橡胶在150℃×2000h、175℃×5000h、200℃×4000h条件下的使用寿命,其结果是仅次于甲基乙烯基硅橡胶。
耐寒性
氟硅橡胶与普通硅橡胶一样,低温性能良好。由于氟硅橡胶是以柔软的Si-O为主链构成的线型高聚物,所以低温特性优于以C-C为主链的氟橡胶。其中,氟硅橡胶(LS-2370U)的低温特性,脆性温度低达-89℃,而一般的氟橡胶约为-30℃。
电性能、耐辐射性能
氟硅橡胶的电性能与普通硅橡胶相近,但可贵之处是在高温、低温、潮湿、油、溶剂、化学品、臭氧等苛刻条件下的变化很小。
氟硅橡胶的耐辐射性能并不突出,但耐辐射老化性能优于甲基乙烯基硅橡胶。
物理机械性能
氟硅橡胶与普通硅橡胶一样,硫化胶的机械强度(是撕裂强度)比较低。因此,改善和提高氟硅橡胶的强度也是一个重要的研究课题。
美国道康宁(Dow Corning)有机硅公司很早就开发出了高强度、高抗撕氟硅橡胶(US-2332U)。中国对高性能氟硅橡胶的研究主要集中在20世纪80年代,尽管从基础研究到应用研究都取得了一定的进展,但与国外相比还存在着不小的差距。
其他特性
氟硅橡胶的耐天候老化性优良,即使暴露5年后,仍保持有良好的性能。臭氧是弹性体老化时生成*多的气体之一,但氟硅橡胶通过动态或静态试验后都未发现有龟裂或裂纹的现象。
此外,氟硅橡胶的防霉性、生理惰性、抗凝血性也是十分良好的。
氟硅橡胶的加工工艺
混炼
氟硅橡胶虽属固体,但可塑度高,不需塑炼,可直接采用开炼机或密炼机进行混炼。其加顺序或混炼工艺过程如下:
生胶(氟硅橡胶+少量硅橡胶)→白炭黑+结构控制剂+加工助剂→倒胶、薄通(5次)→热处理→返炼+交联剂→薄通(8~10次)→出片、停放(12h以上)→待用
当采用开炼机混炼时,*好在开炼机辊筒上方装备防尘或抽风装置,以减少白炭黑的飞扬。在混炼过程中不得有其他杂质或胶粒混入,温度应控制在40℃以下,开足冷却水。开炼机混炼吃粉较慢,每批胶料的混炼时间约在20~40min之间。装胶随开炼机规格而定,一般Φ160mm×320mm的开炼机为1~2kg, Φ250mm×620mm的为5~8kg。
至于采用密炼机混炼,不但可以提高生产效率、降低劳动强度,而且还能够减少白炭黑的飞扬和改善操作环境。密炼机混炼的加顺序基本与开炼机相似,但对加间隔时间的要求并不严格。每批胶料的混炼时间约为8~18min,密炼机的填充系数应控制在0.7~0.75的范围较为适宜。排胶温度与填料种类有关,通常应控制在50℃~70℃的范围。
热处理
当采用未经表面改性的气相法白炭黑作为补强剂时,胶料中加入结构控制剂。因此,胶料的热处理也就成为一道的工序。
热处理的目的主要在于:使结构控制剂与白炭黑进一步结合;消除低分子挥发物。一般来讲,热处理的条件为160℃~200℃×1~1.5h。
过滤
对挤出制品、压延制品、涂胶制品、膜片制品来讲,机械杂质和未分散的配合剂粒子是导致产品出现质量问题的主要因素之一。因此,对上述制品所用的胶料进行过滤。过滤时可采用滤胶机,也可用普通挤出机替代。机筒、螺杆的温度应控制到*低,滤网规格以120~200目为宜。
返炼
胶料经停放后,因凝胶含量增加、可塑性降低,所以使用时进行返炼。胶料返炼应适可而止,返炼不足,胶料柔软性差,表面不平整;而返炼过度,则胶料表面会发粘,不利于操作,对氟硅橡胶更是如此。
硫化
氟硅橡胶不同于其他普通橡胶,硫化是分一段、二段两次完成的。一段硫化时间短(1.5~15min),仅能使制品达到定型的程度;经过二段硫化(3~6h)后才能够达到硫化,硫化胶的各项物性才能够趋于稳定。
模型硫化*适用于O形圈、皮碗、膜片、油封、衬垫、护套等制品的加工;常压热空气硫化和加压蒸汽硫化主要是用于胶管、胶带、胶布、胶绳、电线电缆覆盖层等挤出制品、压延制品、涂胶制品的加工。硫化所用设备可根据制品类型选择,硫化条件可根据制品规格、厚度、硫化体系来确定。其模压制品和挤出制品的一段硫化条件分别见表1、表2所示。
表1模压制品的一段硫化条件
表2挤出制品的一段硫化条件
氟硅橡胶的应用
氟硅橡胶是兼具硅橡胶和氟橡胶两者特性的弹性体材料。与甲基乙烯基硅橡胶相比,*大的优点是耐油、耐溶剂性;而与氟橡胶相比,尽管在耐烷烃溶剂方面的差别甚微,但耐芳烃溶剂性优于氟橡胶,它的良溶剂只有性大、小分子的酮类。氟硅橡胶的耐热性、耐寒性、压缩变形性更优,而且物性对温度的依赖性较小,从低温到高温都显示出了优良的性能。其次,即使不使用增塑剂也可制得低硬度的制品。因此,氟硅橡胶作为一种新的高性能弹性体材料正在广泛地应用。
氟硅橡胶的应用主要在航空航天、车辆船舶、电子通信、精密仪器、石油化工和医疗卫生等领域,但目前巿场需求量*大的还是火箭、卫星、汽车、飞机制造业。
航空薄膜:油箱调压管路中活门用膜片、油箱通气活门用膜片(在-55℃~200℃的煤油蒸汽和150℃的RP煤油中使用的氟硅橡胶涂层与聚酯布作骨架材料的夹布薄膜);
静、动态密封件:垫圈、皮碗、活门;
汽车制品:燃油水平指示传感器软管、雾化器油泵隔膜、燃油泵隔膜、波纹护套、发动机曲轴后密封圈、气缸垫、燃油泵密封件、油箱盖垫圈、油箱加油垫圈、滤油器密封件;
其他:耐氟氯油、耐氟溴油、耐三氯联苯、耐H2S溶液、耐液氮等密封件。
在橡胶中,硅橡胶的工作温度范围广阔(-100~350℃)。例如,经过适当配合的乙烯基硅橡胶或低苯基硅橡胶,经250℃数千小时或300℃数百小时热空气老化后仍能保持弹性;低苯基硅橡胶硫化胶经350℃数十小时热空气老化后仍能保持弹性,它的玻璃化温度为-140℃,其硫化胶在-70~100℃的温度下仍具有弹性。硅橡胶用于火箭喷管内壁防热涂层时,能耐瞬时数千度的高温。硅橡胶在高温下连续使用寿命见表1。
(2)耐臭氧老化、耐氧老化、耐光老化和耐候老化性能
硅橡胶硫化胶在自由状态下置于室外曝晒数年后,性能无显著变化。硅橡胶与其它橡胶的耐臭氧老化性能比较见表2。
(3)电缘性能
硅橡胶硫化胶的电缘性能在受潮、频率变化或温度升高时变化较小,燃烧后生成的二氧化硅仍为缘体。此外,硅橡胶分子结构中碳原子少,而且不用炭黑作填料,因此在电弧放电时不易发生焦烧,在高压场合使用十分。它的耐电晕性和耐电弧性好,耐电晕寿命是聚四氟乙烯的1000倍,耐电弧寿命是氟橡胶的20倍。
(4)的表面性能和生理惰性
硅橡胶的表面能比大多数有机材料小,具有低吸湿性,长期浸于水中吸水率仅为1%左右,物理性能不下降,防霉性能良好,与许多材料不发生粘合,可起隔离作用。硅橡胶、,对人体无不良影响,与机体组织反应轻微,具有优良生理惰性和生理老化性。
(5)高透气性
硅橡胶和其它高分子材料相比,具有良好的透气性,室温下对氮气、氧气和空气的透过量比NR高30~40倍;对气体渗透具有选择性,如对二氧化碳透过性为氧气的5倍左右。
(6)生物医学性能
硅橡胶分子结构的特性使它具有优良的生物医学性能,大量动物和人体试验的成功应用明了这一点。
2、热硫化型硅橡胶
热硫化型硅橡胶是指相对分子质量高(40万~60万)的硅橡胶。采用有机过氧化物作硫化剂,经过加热使有机过氧化物分解产生游离基,并与橡胶的有机侧基形成交联,从而获得硫化胶。
2.1品种及特性
热硫化型硅橡胶是应用早的一类橡胶,发展至今已有许多品种,按化学组成不同分为以下7种:
(1)二甲基硅橡胶
二甲基硅橡胶(polydimethylsiloxanerubber)简称甲基硅橡胶,是硅橡胶中老的品种。
在-60~250℃温度范围内能保持良好弹性。由于存在硫化活性低、工艺性能差、厚壁制品在二段硫化时易发泡、高温压缩变形大等缺点,目前除少量用于织物涂覆外,已被甲基乙烯基硅橡胶替代。
(2)甲基乙烯基硅橡胶
甲基乙烯基硅橡胶(methylvinylpolysiloxanerubber)简称乙烯基硅橡胶,是由二甲基硅氧烷与少量乙烯基硅氧烷共聚而成,乙烯基摩尔分数一般为0.001~0.003。少量不饱和乙烯基的引入使其硫化工艺及成品性能,是耐热老化性和高温抗压缩变形有很大改善。在硅橡胶生产中,甲基乙烯基硅橡胶产量大、应用广、品种牌号多,除大量应用的通用型胶料外,各种型硅橡胶和具有加工特性的硅橡胶(如高强度硅橡胶、低压缩永久变形硅橡胶、导电硅橡胶、导热硅橡胶以及不用二段硫化硅橡胶、颗粒硅橡胶等)也都以其为基础进行加工配合。
(3)甲基乙烯基苯基硅橡胶
甲基乙烯基苯基硅橡胶(methylvinylphenylpolysiloxanerubber)简称苯基硅橡胶,是在乙烯基硅橡胶的分子链中引入二苯基硅氧烷链节(或甲基苯基硅氧烷链节)而制成的。当苯基摩尔分数为0.05~0.10时,统称为低苯基硅橡胶,此时,橡胶的硬化温度降到值(-115℃),使其具有佳的耐低温性能,在-100℃以下仍具有弹性。随着苯基摩尔分数的增大,分子链的刚性也增大,其结晶温度反而上升。
苯基摩尔分数在0.15~0.25时统称为中苯基硅橡胶,具有耐燃特点。苯基摩尔分数在0130以上时,统称为高苯基硅橡胶,具有优良的耐辐射性能。苯基硅橡胶应用在要求耐低温、耐烧蚀、耐高能辐射、隔热等场合。中苯基和高苯基硅橡胶由于加工困难,物理性能较差,生产和应用受到一定限制。
(4)甲基乙烯基三氟丙基硅橡胶
甲基乙烯基三氟丙基硅橡胶(methylvinylrtrifluoropropylpolysiloxanerubber)简称氟硅橡胶(fluorosilicorubber),是在乙烯基硅橡胶的分子链中引入氟代烷基(一般为三氟丙基),具有优良的耐油、耐溶剂性能。例如,对于脂肪族、芳香族和氯化烃类溶剂,石油基的各种燃料油、润滑油、液压油以及某些合成油,其工作温度范围为-50~250℃,在常温和高温下稳定性较好。
(5)亚苯基硅橡胶和亚苯醚基硅橡胶
亚苯基硅橡胶和亚苯醚基硅橡胶(phenylenepolysiloxanerubberandphenylatylenesiliconerubber)是在分子链中含有亚苯基或苯醚基链节的新品种硅橡胶,是为适应核动力装置和导航技术的要求而发展起来的,其主要特性是拉伸强度较高,耐γ射线、耐高温(300℃以上),但耐寒性不如低苯基硅橡胶。
(6)腈硅橡胶
腈硅橡胶(nitrilsiliconerubber)主要是在分子链中引入含有甲基-β-腈乙基硅氧链节或甲基-γ-腈丙基硅氧链节的一种弹性体,其主要特点与氟硅橡胶相似,即耐油、耐溶剂并具有良好的耐低温性能。但由于在聚合条件下存在引起腈基水解的因素,因此生胶的重复性差,其应用发展受到一定限制。
(7)硅硼橡胶
硅硼橡胶(boronsiliconerubber)是在分子主链上含有十硼烷笼形结构的一类新型硅橡胶,具有高度的耐热老化性,可在400℃下长期工作,在420~480℃下可连续工作几小时,而在-54℃下仍能保持弹性。适于在高速飞机及宇宙飞船中作密封材料。美国在60年代末已有硅硼橡胶商品系列牌号,但70年代以后很少报道,其主要原因可能是胶料的工艺性能和硫化胶的弹性都很差,而且碳硼的合成十分复杂,毒性大,成本昂贵。
热硫化型硅橡胶以生胶或硫化胶形式出售,一般配制成具有各种特性的胶料供用户选择,按特性不同可分成下列几类:
(1)通用型(一般强度型)。由乙烯基硅橡胶与补强剂等组成,硫化胶物理性能属中等,是用量大、通用性强的一类胶料。
(2)高强度型。采用乙烯基硅橡胶或低苯基硅橡胶,以比表面积较大的气相法白炭黑或经过改性处理的白炭黑作补强剂,并通过加入适宜的加工助剂和添加剂等综合性配合改进措施,改进交联结构,提高撕裂强度。
(3)耐高温型。采用乙烯基硅橡胶或低苯基硅橡胶,补强剂的种类和耐热添加剂经适当选择,可制得耐300~350℃高温的硅橡胶。
(4)低温型。采用低苯基硅橡胶,脆性温度达-120℃,在-90℃下仍具有弹性。
(5)低压缩永久变形型。主要采用乙烯基硅橡胶,以乙烯基的有机过氧化物作硫化剂,当压缩率为30%时,在150℃下压缩24~72h后的永久变形为7.0%~15%(普通硅橡胶为20%~30%)。
(6)电线、电缆型。主要采用乙烯基硅橡胶,选用电缘性能良好的气相法白炭黑为补强剂,具有良好的挤出工艺性能。
(7)耐油、耐溶剂型。主要采用氨硅橡胶,一般分为通用型和高强度型两大类。
(8)阻燃型。采用乙烯基硅橡胶,添加含卤或铂化合物作阻燃剂组成的胶料,具有良好的抗燃性。
(9)导电型。采用乙烯基硅橡胶,以乙炔炭黑或金属粉末作填料,选择高温硫化或加成型硫化方法,可得到体积电阻率为2.0~100Ω·cm的硅橡胶。
(10)热收缩型。乙烯基硅橡胶中加入具有一定熔融温度或软化温度的热塑性材料,硅橡胶胶料的热收缩率可达35%~50%。
不用二段硫化型。采用乙烯基质量分数较高的乙烯基硅橡胶,通过控制生胶和配合剂的pH值,加入添加剂制得。
(11)海绵型。在乙烯基硅橡胶中加入亚硝基化合物、偶氮和重氮化合物等有机发泡剂,可制得发泡均匀的海绵。
除此之外,国外尚有导热型硅橡胶、荧光型硅橡胶及医用级混炼胶等品种出售。
随着硅橡胶用途的不断开发,胶料的品种牌号日渐增多,过多的牌号会造成生产、贮运和销售工作的混乱。有些厂已相应地将多个品种分成几种典型的基础胶和几种特性添加剂(包括颜料、硫化剂等)出售,使用者根据需要,按一定配方和混合技术分别配伍,即得产品。
这种方法不但使品种简单明了,而且生产批量大,质量稳定,成本降低,也提高了竞争性。
2.2配合
热硫化型硅橡胶的配合剂主要包括补强剂、硫化剂和某些的助剂,一般只需有5~6个组分即可组成实用配方。配方设计应考虑以下几点:
(1)硅橡胶为饱和度高的生胶,通常不能用硫黄硫化,应采用有机过氧化物作硫化剂,因此胶料中不得含有能与过氧化物分解产物发生作用的活性物质(如槽法炭黑、某些有机促进剂和防老剂等),否则会影响硫化。
(2)硅橡胶制品一般在高温下使用,其配合剂应在高温下保持稳定,通常选用无机氧化物作为补强剂。
(3)硅橡胶在微量酸或碱等化学试剂的作用下易引起硅氧烷键的裂解和重排,导致硅橡胶耐热性的降低。因此在选用配合剂时考虑其酸碱性及过氧化物分解产物的酸性,以免影响硫化胶的性能。
2.2.1生胶的选择
对于使用温度要求一般(-70~250℃)的硅橡胶制品,都可采用乙烯基硅橡胶;当对制品的使用温度要求较高(-90~300℃)时,可采用低苯基硅橡胶;当制品要求耐高低温又需耐燃油或溶剂时,则应当采用氟硅橡胶。
2.2.2硫化剂和硫化机理
(1)硫化剂
用于热硫化硅橡胶的硫化剂主要包括有机过氧化物、脂肪族偶氮化合物、无机化合物和高能射线等,其中常用的是有机过氧化物。这是因为有机过氧化物一般在室温下比较稳定,但在较高的硫化温度下能迅速分解产生自由基,从而使硅橡胶产生交联。硅橡胶常用硫化剂如表3所示。
这些过氧化物按其活性高低可以分为两类:一类是通用型,活性较高,对各种硅橡胶均能起硫化作用;另一类是乙烯基型,因其活性较低,仅能够对含乙烯基的硅橡胶起硫化作用。
过氧化物的用量受生胶品种、填料类型和用量、加工工艺等多种因素的影响,只要能达到所需的交联度,应尽量少用硫化剂。对于乙烯基硅橡胶(乙烯基摩尔分数为0.0015)模压制品用胶料来说,各种过氧化物常用用量范围如下(以100份生胶计):BP 0.5~1份;DCBP 1~2份;DTBP 1~2份;DCP 0.5~1份;DBPMH 0.5~1份;TBPB 0.5~1份。
随着乙烯基质量分数的增大,过氧化物用量应减小。胶浆、挤出制品胶料及胶粘剂用胶料中过氧化物用量应比模压用胶料中的大。某些场合下采用两种过氧化物并用,可减小硫化剂用量,并可适当降低硫化温度,提高硫化效应。
(2)硫化机理
硅橡胶以过氧化物硫化时,过氧化物对硅橡胶的交联是在两个活化的甲基或乙烯基之间通过自由基反应进行的。二甲基硅橡胶的交联按下列反应式进行:
乙烯基硅橡胶的交联按下列反应式进行:
硅橡胶除常用上述过氧化物硫化外,还可用高能射线进行辐射硫化。辐射硫化也是按自由基机理进行的,当生胶中的乙烯基摩尔分数较高(0.01)或与其它橡胶并用时,也可以用硫黄硫化,但性能差。
2.2.3补强剂及相关的机理
未经补强的硅橡胶硫化胶很低,只有0.3MPa左右,没有实际使用价值。加入适当的补强剂可使硅橡胶硫化胶的强度达到3.9~9.8MPa,这对提高硅橡胶的性能,延长制品的使用寿命是其重要的。硅橡胶补强填充剂的选择要考虑到硅橡胶的高温使用及用过氧化物硫化(是用有酸碱性的物质)对硅橡胶的不利影响。
硅橡胶用的补强填充剂按其补强效果的不同可分为补强性填充剂和弱补强性填充剂,前者的粒径为10~50nm,比表面积为70~400m2·g-1,补强效果较好;后者粒径为300~1000nm,比表面积在30m2·g-1以下,补强效果较差。
(1)补强填充剂
硅橡胶的补强填充剂主要是指合成二氧化硅,又称白炭黑。白炭黑可分为气相法白炭黑和沉淀法白炭黑。气相法白炭黑为硅橡胶常用的补强剂之一,由它补强的胶料其硫化胶的机械强度高、电性能好,并可与其它补强剂或弱补强剂并用,制备不同使用要求的胶料。
与用气相法白炭黑补强的硅橡胶胶料相比,用沉淀法白炭黑补强的胶料机械强度稍低,介电性能(是受潮后的介电性能)较差,但耐热老化性能较好,混炼胶的成本低。对制品的机械强度要求不高时,可单独使用沉淀法白炭黑或与气相法白炭黑并用。
用处理过的白炭黑作补强剂,胶料的机械强度较高,混炼和返炼工艺性能好,硫化胶的透明度也好,因此广泛用在医用制品中。此外,这种胶料的粘合性好,溶解性优良,可用于粘着和制作胶浆。
(2)弱补强填充剂
弱补强填充剂也可称作惰性填料,对硅橡胶补强作用很小,它们在硅橡胶中一般不单独使用,而是与白炭黑并用,以调节硅橡胶的硬度,改善胶料的工艺性能和硫化胶的耐油性能及耐溶剂性能,降低胶料的成本。常用的弱补强剂有硅藻土、石英粉、氧化锌、三氧化二铁、二氧化钛、硅酸锆和碳酸钙等。
硅橡胶常用补强剂的用量和物理性能如表4所示。
2.2.4助剂
(1)结构控制剂
采用气相法白炭黑补强的硅橡胶胶料贮存过程中会变硬,塑性值下降,逐渐失去加工工艺性能,这种现象称作“结构化”效应。为和减弱这种“结构化”倾向而加入的配合剂称为“结构控制剂”。结构控制剂通常为含有羟基或硼原子的低分子有机硅化合物,常用的有二苯基硅二醇、甲基苯基二乙氧基硅烷、四甲基亚乙基二氧二甲基硅烷、低分子羟基硅油及硅氮烷等。
(2)耐热添加剂
加入某些金属氧化物或其盐以及某些元素的有机化合物,可大大改善硅橡胶的热空气老化性能,其中常用的为三氧化二铁,一般用量为3~5份;其它如锰、锌、镍和铜等金属氧化物也有类似的效果。加入少量(少于1份)的喷雾炭黑也能起到提高耐热性的作用。通常在250~300℃的温度范围内进行热空气老化,才能显示出这些添加剂的作用。
(3)着剂
硅橡胶常用着剂如下:
氧化铁(三氧化二铁) 红
镉黄(二氧化镉) 黄
铬绿(三氧化二铬) 绿
炭黑 黑
钛白(二氧化钛) 白
群青 蓝
(4)其它
在制备硅橡胶海绵制品时加入发泡剂,硅橡胶常用的发泡剂有N,N2二亚硝基五亚甲基四胺和偶氮二甲酰胺等。橡胶胶料中加入少量(一般少于1份)四氟乙烯粉,可改善胶料的压延工艺性能及成膜性,提高硫化胶的撕裂强度。硼酸酯和含硼化合物能使硅橡胶硫化胶具有自粘性。采用比表面积较大的气相法白炭黑补强时,加入少量(3~5份,乙烯基质量分数一般为0.10左右)高乙烯基硅油,胶料经硫化后,抗撕裂性能可提高至30~50kN·m-1。常用乙烯基硅橡胶和氟橡胶配方及物理性能见表5。
2.3加工
硅橡胶可采用普通橡胶加工设备进行加工,但应注意:①加工过程保持清洁,不能混有其它橡胶、油污或杂质,否则会影响硅橡胶的硫化及性能;②硅橡胶制品需在烘箱中进行较长时间热空气二段硫化,以改善硫化胶的性能。
2.3.1混炼
硅橡胶生胶比较柔软,具有一定的可塑性,可不经塑炼而直接采用开炼机或密炼机进行混炼。混炼方法可有以下几种:
(1)开炼机混炼
双辊开炼机辊筒速比以(1.2~1.4)∶1为宜,快辊在后,较高的速比导致较快的混炼,低速比可使胶片光滑。辊筒通有冷却水,混炼温度宜在40℃以下,以焦烧或硫化剂的挥发损失。混炼时开始辊距较小(1~5mm),然后逐步增大。加料和操作顺序:生胶(包辊)-补强填充剂-结构控制剂-耐热助剂-着剂-薄通5次-下料,烘箱热处理-返炼-硫化剂-薄通-停放过夜-返炼-出片。胶料也可不经烘箱热处理,在加入耐热助剂后,加入硫化剂再薄通,停放过夜返炼,然后再停放数天返炼出片使用。混炼时间为20~40min。
硅橡胶在加入炼胶机时包慢辊(前辊),混炼时则很快包快辊(后辊),炼胶时能两面操作。由于硅橡胶胶料比较软,混炼时可用普通腻子刀操作,薄通时不能像普通橡胶那样拉下薄片,而采用钢、尼龙或耐磨塑料刮刀刮下。
为便于清理和润滑油漏入胶内,应采用活动胶板。气相法白炭黑易飞扬,对人体有害,应采取相应的保护措施。如果在混炼时直接使用粉状过氧化物,采取防爆措施,好使用膏状过氧化物。
(2)密炼机混炼
用实验室2L密炼机混炼时,混炼时间为6~16min。混炼无困难。当装料系数为0.74时,采用Φ160mm开炼机混炼也能正常进行。排料温度与补强填充剂的类型有关,当采用弱补强性填充剂和沉淀法白炭黑时,排胶温度在50℃以下;当使用气相法白炭黑时排胶温度为70℃左右。
(3)胶料停放和返炼
硅橡胶胶料混炼结束后,停放时间应不少于24h,以使各种配合剂(是结构控制剂)能与生胶充分起作用。停放后胶料变硬,塑性值下降,使用前进行返炼。返炼采用开炼机,开始时辊距较大(3~5mm),此时胶料较硬,表面呈皱纹状,包在前辊上。随着返炼时间的延长,胶料逐渐变软;慢慢缩小辊距(0.25~0.5mm),胶料很快包在后辊上。待胶料变软,表面光滑平整后,即可下料出片。返炼不足,胶片表面有皱纹;返炼过度,则胶料发粘而粘辊。返炼温度一般控制在室温。
2.3.2挤出
硅橡胶一般比较柔软,挤出效果较好,易于操作,可挤出各种不同形状和尺寸的制品,其加工设备和工具基本上与普通橡胶相似。
出机一般是用Φ30或Φ65mm的单螺纹螺杆,长径比为(10~12)∶1效果较好。挤出时尽量保持低温,以不超过40℃为宜,故机筒和螺杆均须通冷却水。对质量要求较高的产品可在靠近机头部分加装80~140目滤网,以除去胶料中的杂质,改善挤出质量。
硅橡胶挤出半成品柔软而易变形,因此立即进行硫化。常用的方法是热空气连续硫化;电线、电缆工业通常用高压蒸汽连续硫化。如在挤出后不能连续硫化,为变形,挤出后应立即用圆盘、圆鼓或输送带接取,用滑石粉隔离以免相互粘结。若发现胶料过软而不适于挤出时,可在胶料中再混入3~5份气相法白炭黑。
用于挤出的胶料配方,其硫化剂用量应比模压制品的适当增大,硅橡胶的挤出速度低于其它橡胶,当要求与其它橡胶达到相同挤出速度时,应采用较高的螺杆转速。
2.3.3压延
压延机一般采用立式三辊压延机。用于生产胶片时,中辊是固定的,中辊转速比上辊比为(1.1~1.4)∶1,下辊的转速和中辊相同。当压延机开动时,上辊温度为50℃,中辊应保持为室温,下辊用冷却水冷却。压延速度一般为60~300cm·min-1,不宜过快,先以低速调整辊距(中、下辊),以一定的压延厚度,然后再提高至正常速度进行连续操作。
当三辊压延机用于硅橡胶贴胶和擦胶时,织物替代了垫布(聚酯薄膜)在中辊和下辊之间通过。三辊压延机只适用于单面覆胶,长期生产时应采用四辊压延机。
用于压延的胶料正确控制其返炼程度,好在炼胶机上先不充分返炼,以期在压延过程中获得返炼,这样可以避免胶料在压延过程中因返炼过度而粘辊。胶料配方对压延也有一定的影响,采用补强性填充剂的胶料压延工艺性能较好。
2.3.4涂胶
涂胶是指把硅橡胶胶浆用浸浆或刮浆的方法均匀分布在织物上用以改进薄膜制品的和屈挠性能,使织物耐潮,以制造耐高温的电缘材料等。
(1)胶浆制备
供制胶浆用的硅橡胶胶料其硫化剂多采用过氧化二苯甲酰(BP),用量比一般模型制品稍大。补强填充剂若采用气相法白炭黑,用量不宜超过40份,并适当增大结构控制剂的用量,采用甲苯或二甲苯等挥发性溶剂。
混炼胶经充分返炼后下薄片,然后剪成小块,置于溶剂中浸泡过夜,采用搅拌机或混合器进行搅拌,制成固形物质量分数为0.15~0.25的胶浆。胶浆应保存在40℃以下的环境中。
(2)织物预处理
硅橡胶涂胶用的底层织物一般采用玻璃布、尼龙和聚酯等。其中玻璃布因具有耐热性好、强度高和吸湿性低等特点应用较多。玻璃纤维在拉丝过程中薄膜涂有石蜡润滑剂(占织物质量的0.2%~0.5%),在硫化温度下易挥发,影响胶料与织物的结合,在涂胶前进行脱蜡。尼龙和聚酯的热变形较大,影响橡胶和织物的结合,为此在涂胶前须进行热定型,即将织物在一定牵伸下,进行短时间热处理,尼龙的处理温度为170~175℃,聚酯处理温度为215~220℃。
(3)涂胶
织物经预处理后,还要进行表面胶粘剂处理,然后才可涂胶。胶粘剂是一种由烷氧基硅烷、硼酸酯、硫化剂和溶剂(乙酸乙酯或乙醇)组成的溶液。
织物经胶粘剂表面处理后,即可用涂胶机将胶浆均匀涂在织物上,然后经干燥、硫化即成。硫化一般分两段进行:一段温度为120~130℃,二段温度为230℃。涂层的厚度可以通过改变胶液的粘度或调节织物通过涂胶槽的速度来控制。
2.3.5粘合
硅橡胶能与很多材料,包括金属、塑料、陶瓷、纤维、硅橡胶本身以及其它一些橡胶粘合,采用能与硅橡胶本身同时硫化的胶粘剂可使硅橡胶与被涂层之间获得好粘合。
硅橡胶硫化胶之间的粘合一般采用胶粘剂。常用胶粘剂配方举例如下:乙烯基硅橡胶 100;气相法白炭黑 35;三氧化二铁 5;硼酸正丁酯 3;膏状硫化剂DCBP 3。
2.3.6硫化
硅橡胶硫化工艺不是一次完成,而是分两个阶段进行的,胶料在加压下(如模压硫化、硫化罐直接蒸汽硫化等)或常压下(如热空气连续硫化)进行加热定型,称为一段硫化(或定型硫化);在烘箱中高温硫化,以进一步稳定硫化胶各项物理性能,称为二段硫化(或后硫化)。
(1)一段硫化
①模型制品硫化。可采用平板硫化、传递模压硫化和注压硫化。硫化条件如表6所示。
硅橡胶制品硫化时,一般不使用脱模剂,应迅速装料、合模、加压,否则容易焦烧,是含有硫化剂BP和DCBP的胶料。传递模压硫化是一种加工硅橡胶胶料应用较广泛的工艺,与每模单孔的平板硫化比较,其优点是加工周期短,并能硫化复杂的是带有插入物和销钉的橡胶件。与注压硫化比较,设备成本较低。
注压硫化模制品,可提高劳动生产率,降低劳动强度,同时还可以减小过氧化物的用量,提高制品的抗撕裂性能,改善压缩永久变形性能,但制品收缩率较大。
②挤出制品的硫化。可采用蒸汽加压硫化、热空气连续硫化、液体硫化槽连续硫化、鼓式硫化和辐射硫化等方法。前3种方法较常用。
(2)二段硫化
硅橡胶制品经过一段硫化后,有些低分子物质存在于硫化胶中,影响制品性能。例如,采用通用型硫化剂(如硫化剂BP或DCBP)的胶料,经过一段硫化后,其硫化剂分解的酸性物质量,将增大海绵孔的孔度,降低密度;增大硫化剂的用量将缩小海绵孔的孔度,增大密度,产生较厚的孔壁。此外,硫化温度对海绵的发孔情况也有很大影响。
2.3.7发泡
在硅橡胶胶料中加入发泡剂,然后在受压状态下加热硫化使橡胶发泡,可制得硅橡胶海绵。但注意以下几个问题。
(1)应选用其分解产物不影响硅橡胶耐热性的发泡剂。一般采用有机发泡剂如发泡剂BN、尿素等,其分解产物在二段硫化中除去。
(2)适当控制硫化剂和发泡剂的用量,以使发泡速度与硫化速度相匹配。增大发泡剂的用量,将增大海绵孔的孔度,降低密度;增大硫化剂的用量将缩小海绵孔的孔度,增大密度,产生较厚的孔壁。此外,硫化温度对海绵的发孔情况也有很大影响。
(3)硫化剂适当并用可较好地控制海绵孔度和密度。通常硫化剂DBPMH与BP或TBPB与DCBP并用效果较好。
(4)可采用2号气相法白炭黑或2号气相法白炭黑与沉淀法白炭黑并用作补强剂。应严格控制胶料的塑性值,塑性值过大,发孔时易造成过度膨胀,形成粗燥的开孔结构,甚至很多孔破裂;塑性值过小,则发孔不足,产品较硬。采用弱补强性填充剂的胶料比较容易控制塑性值,返炼的胶料好当天使用。
(5)发泡剂应均匀分散于胶料中。一般发泡剂粒子易结团,分散,可先制成生胶/发泡剂母炼胶配比(1∶1),再进行混炼,以提高分散效果。
(6)采用模压工艺的胶料,应注意去除胶料中的气泡,破坏海绵结构。
用于模压海绵制品的胶料,经混炼出片后,应根据模具规格进行裁料,并在表面涂隔离剂,以备入模硫化。一般用滑石粉作隔离剂,也可用白炭黑。
硅橡胶海绵模型制品的定型硫化有两种方法:一种是一步法,即胶料在模具中一次发孔成一定形状和尺寸的海绵,二段硫化发孔;另一种是两步法,即先使胶料在模具中进行短时间硫化,使其初步发孔并恰好形成一层表面,然后置于烘箱中再发孔成一定形状和尺寸。对海绵薄板来说,前一种的硫化时间通常为15~20min,后一种的硫化时间一般在5min之内。
3、室温硫化型硅橡胶
室温硫化(亦称缩合硫化型)硅橡胶(roomtemperaturevulcanizedsiliconerubber),是指不需要加热在室温下就能硫化的硅橡胶。其分子结构特点是在分子主链的两端含有羟基或乙酰氧基等活性官能团,在一定条件下,这些官能团发生缩合反应,形成交联结构而成为弹性体。
3.1品种和特性
室温硫化硅橡胶相对分子质量较低,通常为粘稠状液体,按其硫化机理和使用工艺,可分为单组分室温硫化硅橡胶和双组分室温硫化硅橡胶。
3.1.1单组分室温硫化硅橡胶
单组分室温硫化硅橡胶是以羟基封端的低相对分子质量硅橡胶与补强剂混合,干燥去水,然后加入交联剂(含有能水解的多官能团硅氧烷),此时,混炼胶已成为含有多官能团端基的聚合物,封装于密闭容器内,挤出时与空气中水分相接触,使胶料中的官能团水解形成不稳定羟基,然后缩合交联成弹性体。
单组分室温硫化硅橡胶随交联剂类型不同,可分为脱酸型和非脱酸型。前者使用较为广泛,所用交联剂为乙酰氧基类硅氧烷(例如甲基三乙酰氧基硅烷或甲氧基三乙酰氧基硅烷),在硫化过程中放出副产物乙酸,对金属有腐蚀作用。非脱酸缩合硫化型种类较多,其中有以烷氧基(例如甲基三乙氧基硅烷)为交联剂的脱醇缩合硫化型,此反应仅靠空气中的水分作用,硫化缓慢,需加入烷基钛酸酯类的硫化促进剂,硫化时放出醇类,无腐蚀作用,适合作电气缘制品。此外,尚有以硅氮烷为交联剂的脱胺缩合硫化(硫化时放出有机胺,有臭味,对铜有腐蚀)以及以丙酮肟、丁酮肟为交联剂的脱肟硫化、脱酰胺硫化和硫化速度快的脱酮硫化型等。
按产品模量高低可分为低模量(脱酰胺型)、中模量(适于作建筑密封胶)和高模量(脱醇型);根据产品实用性能,可以分为通用类和类两大品种,其中类型包括阻燃型、表面可涂装型、防霉型和耐污染型。
单组分室温硫化硅橡胶对多种材料(如金属、玻璃、陶瓷等)有良好的粘结性,使用时方便,一般不需称量、搅拌、除泡等操作。硫化是从表面开始,逐渐向深处进行。单组分室温硫化硅橡胶主要用作胶粘剂,在建筑工业中作为密封填隙材料使用。
3.1.2双组分室温硫化硅橡胶
此类橡胶的硫化是由生胶的羟基在催化剂(有机锡盐,如二丁基二月桂酸锡、辛酸亚锡等)作用下与交联剂(烷氧基硅烷类,如正硅酸乙酯或其部分水解物)上的硅氧基缩合反应而成,可分为脱乙醇缩合硫化、脱氢缩合硫化、脱水缩合硫化和脱羟胺缩合硫化等,以脱醇型为常见。双组分室温硫化硅橡胶通常是将生胶、填料与交联剂混为一个组分,生胶、填料与催化剂混成另一组分,使用时再将两个组分经过计量进行混合。双组分的硫化时间主要取决于催化剂用量,用量大,硫化快。此外,环境温度越高,硫化也越快;硫化时无内应力,不收缩,不膨胀,硫化时缩合反应在内部和表面同时进行,不存在厚制品深部硫化困难问题。它对其它材料无粘合性,与其它材料粘合时需采用表面处理剂作底涂。双组分室温硫化硅橡胶可作制模、灌封材料等使用。
室温硫化型硅橡胶可根据使用要求制成不同粘度的胶料,一般有流体级、中等稠度级和稠度级。流体级胶料具有流动性,适宜浇注、喷枪操作;如果要求更低粘度胶料(灌注狭小缝隙时),可在胶料中渗入甲基三乙氧基硅烷或它的低聚体,也可用甲基硅油201进行稀释。中等稠度的胶料其粘度正好能充分流动,而不致淌下来,可获得表面平滑的制品,适于涂胶和浸胶用。稠度级胶料具有油灰状稠度,可用手、刮板或嵌缝刀操作,也可用压延法将它涂覆在各种织物上。
近年来,室温硫化硅橡胶在改进研究方面活跃,随着应用面的扩大,出现了高粘结性、高强度、高伸长、低模量、阻燃型、耐油型以及固化型等新品种。
3.2配合
3.2.1硫化剂
单组分室温硫化硅橡胶主要依赖空气中的水分进行交联反应,胶料在使用前应密闭贮存;在双组分室温硫化硅橡胶中(除加成反应系统),含端羟基的硅橡胶常用的硫化剂为硅酸酯(如正硅酸乙酯)和钛酸酯类(如钛酸正丁酯)等;催化剂主要使用有机锡盐,如二丁基二月桂酸锡、辛酸亚锡等。调节硫化剂和催化剂的用量可改变硫化速度。硫化剂的用量一般为1~10份;催化剂的用量一般为0.5~5份。试验明,催化剂二丁基二月桂酸锡对铜有腐蚀作用,采用氧化二丁基锡[(C4H9)2SnO]或氧化二辛基锡[(C8H17)2SnO]与正硅酸乙酯[Si(OC2H5)4]的回流产物作硫化体系,硫化胶与铜接触存放1年未发现腐蚀。
3.2.2补强填充剂
室温硫化硅橡胶也加白炭黑作为补强剂,否则强度比热硫化型的更低。其配合方法同热硫化型。
3.3加工
3.3.1单组分室温硫化硅橡胶
单组分室温硫化硅橡胶贮存在与水和空气隔的密闭容器内,一般在几个月内能使用。使用时无需添加催化剂,只要将胶料从密闭容器内挤出接触空即可,因此使用方便;可用模压、挤出或其它方法进行短时间加工,然后暴露于空气中经一定时间即由膏状物硫化而成为弹性体。
单组分室温硫化型硅橡胶是一种胶粘剂。
用于粘合时,不用表面处理剂,即对玻璃、陶瓷、金属、木材、塑料和硫化硅橡胶等具有良好的粘合性能。因为这种橡胶是在室温下接触空气中的湿气从表面开始硫化,然后通过水分的扩散而向内逐渐硫化。过厚的制品其内部硫化需要很长的时间,因此对制品的厚度(或密封的深度)有一定的限制。厚度一般不宜超过10mm。
如需要超过10mm时可采用多次施工的方法。
空气的湿度对硫化速度有决定性的影响,湿度越大,硫化越快。当气候比较干燥,湿度很小时,可喷水增大空气中的水分,使之达到实际需要的硫化速度。
3.3.2双组分室温硫化硅橡胶
双组分室温硫化硅橡胶宜贮存在阴凉干燥处,避免阳光直晒,贮存时间如超过4个月,应进行检验,性能不变方可继续使用。
(1)催化剂的加入
在液体或中等稠度的室温硫化硅橡胶胶料中加入催化剂,用手工搅拌使之分散,待混合均匀后,将胶料置于密闭容器中抽真空,在0.67~2.67kPa下维持3~5min,以排除气泡。当使用稠厚级橡胶时,可采用炼胶机、捏合机或调浆机将催化剂混入胶料。催化剂可用称量法或容量法量取。由于催化剂用量一般只有0.5~5份,因此应注意混合均匀。室温硫化型硅橡胶混入催化剂后即逐渐交联而固化,因此应根据需要量配制。如有剩余,可存放于低温处(如冰箱中),延长使用时间。
(2)织物的涂覆
室温硫化硅橡胶可按下列方法加入催化剂,用涂胶或压延的方法涂覆在各种织物上,不必用溶剂稀释制成胶浆。
涂胶时催化剂的加入方法有:①在涂胶之前加入胶料中;②加在涂胶织物的另一面,让催化剂渗过布层使橡胶交联;③在涂胶之前加在织物要涂胶的面上。种方法限定操作时间在胶料适用期内,否则将固化而不能应用;后两种方法操作时间不受胶料适用期的限制。
(3)胶料的溶解
可用普通芳香族溶剂,如甲苯或二甲苯来溶解胶料,制备成室温硫化二甲基硅橡胶胶浆。
这种胶浆可用普遍浸渍法浸涂到织物上。
(4)粘合
室温硫化型硅橡胶可制成胶粘剂,用来粘结各种材料。当用于各种硫化的硅橡胶及其与金属或非金属(如玻璃、玻璃钢、聚乙烯、聚酯等)之间的粘合时,胶粘剂由甲、乙两组分配制而成。甲组分为含有适量补强填充剂、少量钛白粉和氧化铁的糊状室温硫化型硅橡胶,乙组分为硫化体系,由多种硫化剂(正硅酸乙酯、钛酸丁酯等)和催化剂(二丁基二月桂酸锡等)组成。使用前将两组分按质量比9∶1充分混合均匀即成。该胶粘剂的活性期为40min(20℃,相对湿度为65%)。如欲延长活性期,可减小催化剂用量,但用量不得小于1份,否则粘合性变差。催化剂用量过多,会导致硫化胶耐热性能降低。
粘合工艺在常温下加压或不加压完成。被粘合物表面应去除污垢,并用丙酮或甲苯等清洗;然后在金属或非金属表面先涂上一层表面处理剂,在室温下干燥1~2h(具体时间应视当时的温度和湿度而定)后,即可涂胶粘剂进行粘合。采用表面处理剂处理的表面,在1周内涂胶时不影响粘合效果。
(5)硫化
双组分室温硫化硅橡胶的硫化是靠加入液体催化剂来实现的。固化时间随硫化剂和催化剂的用量而变,从十几分到24h;升高或降低温度也可缩短或延长固化时间。
室温硫化型硅橡胶制品一般不需要在烘箱内进行二段硫化,但由于硫化过程中会产生微量挥发性物质(如乙醇),当厚制品硫化时挥发性物质不易逸出,为此可采用多次硫化法,即每次浇注或填充10~15mm厚度,待失去流动性后放置30min,再继续浇注或填充。若厚制品的使用温度高于150℃时,好在室温硫化后再经100℃热处理,以驱除挥发性物质,提高制品的耐热性。
4、加成硫化型硅橡胶
加成硫化型硅橡胶是指官能度为2的含乙烯基端基的二甲基硅氧烷在铂化合物的催化作用下,与多官能度的含氢硅烷起加成反应,从而发生链增长和链交联的一种硅橡胶。生胶一般为液态,聚合度为1000以上,通常称液态硅橡胶(LSR)。
4.1特点
液态硅橡胶制品除保持了硅橡胶固有的许多典型的特性,如的电缘性、使用温度范围广和在恶劣环境下的长期耐候老化性等外,还有如下的特点:
(1)清洁、稳定
液态硅橡胶不含溶剂和水分,对环境;胶料以两组分供应,均经过滤、排气处理;两组分混合料在正常室温下可存放24h以上,冷却放置甚至可达2d以上,不需要再行洁化。
(2)工艺简便、快捷
①两组分胶料以1∶1混合,配料工艺简便;②对于模压制品,从配料到成品,原则上可以说是一步的,这就简化了工艺;③硫化速度快。例如,对于用多孔模制造的模压制品(每孔约用7g胶料),其硫化周期为20~30s,约为普通橡胶(硫化周期4~10min)的1/12~1/20;④除非要求制品具有特低的耐压缩永久变形性,一般不需要后硫化;⑤收缩率较低,一般在千分之几以下;⑥制品着工艺简便;⑦一般情况下成品无需修边。
(3)
据DowCorning公司估计,由于工艺的简化和硫化方法的改变,能耗可降低约75%。
(4)成本低
液态硅橡胶的加工生产一般只需1人进行。据DowCorning公司计算,每件约6g的模压制品,由于人力的减少,可降低成本42%,还不包括上述的能耗降低和生产空间的减少这两个因素在内。
(5)固定投资少
无论模压制品还是挤出制品,均可以轻型机械替代重型机械,厂房面积也可大大减小。
4.2配合和加工
4.2.1配合
液态硅橡胶的配合简单,由生胶、填充剂、交联剂、催化剂、反应抑制剂以及必要的添加剂等组成,现简述如下。
(1)生胶。采用官能度为2(或2以上)的含乙烯基端基的聚硅氧烷,聚合度为1000以上。结构式为:
(2)填充剂。填充剂主要是采用气相法白炭黑,并以三甲基封端的聚硅氧烷作表面处理剂。经表面处相法白炭黑的加入,除用以补强外,还可以增大粘度,这种粘度的增强比较稳定,较少受时间的影响而变化。
(3)交联剂。交联剂实际上是液态硅橡胶双组分中另一组分的主要成分,由氢端基官能度至少为2以上的聚硅氧烷组成,它与乙烯基基团发生加成反应,形成交联结构,而使胶料固化。其用量不能过大,否则其耐热性会降低。
(4)催化剂。催化剂主要为有机铂的络合物,较新的发展是导入含乙烯基的低分子聚硅氧烷的配位化合物,其用量小。
(5)反应抑制剂。反应抑制剂用于调整活性期,延长贮存稳定性。一般为炔类化合物,也可利用含胺、锡、磷等化合物。
(6)其它的添加剂。其它添加剂包括着剂、脱模剂等。
上述包括生胶在内的各种配合剂都是分成两个组分供应的,使用时将两个组分混合,在一定的条件下硫化成型,这一点与缩合型硫化硅橡胶的制备相同。
4.2.2加工
(1)计量配合
虽然在配合胶料中已经加入了适当的反应抑制剂,如果存放条件不妥当,仍有可能导致室温下部分橡胶产生硫化。因此,通常都是把胶料分成两个配合组分。一种含有催化剂,另一种含有交联剂,以1∶1配合。
(2)硫化
液态硅橡胶的硫化反应属于加成型,反应式如下:
一部分在侧链的乙烯基则可能发生与乙烯基硅橡胶类似的交联反应。
液态硅橡胶能在高温下以很快的速度进行硫化,而又不致焦烧。液态硅橡胶硫化的大特点就是高温。据DowCorning公司的资料,一个7g制件的多孔模,在连续作业中,整个进模、硫化及出模的时间仅需20~30s,是一般橡胶的所谓硫化的1/10~1/20。
(3)注射模压
液态硅橡胶的注射模压既不同于普通硅橡胶,也不同于塑料。与其它橡胶注压相比,在注压前液态硅橡胶不需要塑化,粘度低得多,而硫化快。与塑料相比,液态硅橡胶的粘度和塑料的“熔融”粘度相近,但它是热固性的,而不是热塑性的。
从工艺上看,液态硅橡胶主要应用在注压、挤出和涂覆方面。主要的挤出制品是电线、电缆;涂覆制品是以各种材料为底衬的硅橡胶布或以纺织品补强的薄膜;注压则为各种模型制品。由于其流动性能好,强度高,更适宜制作模具和浇注仿古艺术品。因为硫化中没有交联剂等副产品溢出,生胶的纯度很高且生产过程中洁净卫生,液态硅橡胶尤其适合制造要求高的医用制品。
5、硅橡胶的再生
硅橡胶具有很多的性能,但价格较高,因此废胶的再生利用,对节约原材料、降低生产成本具有经济意义。
硅橡胶再生工艺过程包括精选、切块、裂解、精制和配料。即首先将废胶进行清洗,去除垃圾和杂质,然后进行挑选和分类,切成小块,送往裂解。裂解的方法很多,有机械轧炼裂解、直接蒸汽热裂解、干热裂解和化学裂解等。其中以前两种较为常用和简便,着重介绍如下。
(1)机械轧炼裂解
机械轧炼裂解可在普通轧炼机上进行。即将切成小块的废胶放在炼胶机上轧炼,开始时辊距要大些,待胶料包辊后,减小辊距。当扎得较细碎时,即可薄通。待逐渐形成连续带状后,就可下片存放。该法的缺点是采用气相法白炭黑的废胶不易轧碎,轧炼时间长。为了缩短轧炼时间,提高轧炼再生效率和再生胶质量,可在轧炼过程中适当(10%左右)加入沉淀法白炭黑,使软硬不同的胶料轧碎混合,缩短再生时间。
(2)直接蒸汽热裂解
直接蒸汽热裂解是将废胶料小块放入压力约0.5MPa(温度150~160℃)的蒸汽硫化罐中处理3~4h。如果废橡胶硬度较高,可适当延长处理时间,但不宜过长,以免废橡胶过度降解,性能变差。经热处理的废橡胶再在炼胶机上充分轧碎,待包辊后再薄通出片。在轧碎时一般可加入少量酒精,使其增加机械摩擦,提高轧炼效率。若遇粘辊可加一些白炭黑或其它无机填料。该法制得的再生胶质量均匀,塑性大,缺点是加工处理时间长,存放后很难返炼。如果在胶料中加入结构控制剂,如二苯基硅二醇或羟基硅油,则较易返炼。
再生胶性能一般比生胶差,拉伸强度、扯断伸长率、撕裂强度和抗压缩永久变形性能均较低,硬度较大。其拉伸强度一般为2.9~3.8
MPa,扯断伸长率为100%~150%。随填料用量增大,硬度增大,扯断伸长率降低。当单用再生胶时,除加入补强剂白炭黑外,还可加入弱补强性填充剂(如二氧化钛或氧化锌50~100份),以降低成本。并应加入适量的硫化剂(比一般生胶增加约1倍),以便使硫化胶保持一定的硬度。当生胶中掺用30%~50%再生胶时,其硫化胶的物理性能变化不大(仅拉伸强度和扯断伸长率稍低),能耐250~300℃的高温老化。再生胶高掺用量可达70%~80%。再生胶可单独用于制造胶板,不宜单独用作挤出制品。若再生胶经过过滤后与生胶并用,则可用来制造挤出制品。
6、应用
硅橡胶具有的综合性能,尤其是硅橡胶的生物相容性更是一种关键的特性,它已成功地用于其它橡胶用之无效的场合,解决了许多技术问题,满足了现代工业和日常生活的各种需要。与其它橡胶一样,硅橡胶可加工成各种型材、胶管、胶条、胶辊、胶布等制品;室温硫化型硅橡胶可就地大面积施工,使用方便。
(1)汽车工业
硅橡胶在汽车工业中的应用增长速度很快,硅橡胶(是具有各种特性的硅橡胶)可耐燃油、润滑油的侵蚀,提高汽车各部件的使用性能,降低维修费用。可用于汽车点火线、火花塞保护罩、加热及散热器用软管、消声器衬里、蓄电池接头以及用氟硅橡胶制的加油泵等。随着车辆电子电气化的发展,室温硫化硅橡胶广泛用于电子零件、电气装配件的灌封料、风挡玻璃、车体四周密封及反射镜等处的粘接密封剂。
(2)电子、电气工业
电子、电气工业是硅橡胶作为缘材料使用早,需求量较大的一个领域。硅橡胶主要用于电视机阳罩、高压保护罩、高压引出线、冰箱除霜器电线、功率或讯号传递用电线和电缆等。用硅橡胶制造的缘子将替代陶瓷制品广泛用于输电线路,是超高压线路。导电硅橡胶用于电子计算机、电话等仪器的电接点件及液晶显示触点件。阻燃和耐辐射硅橡胶制造的电线、电缆广泛用于原子能发电站。硅橡胶加热片、加热带用于控制多种精密仪表和输油管道的工作温度,在医疗上作理疗热敷器用的加热毯。室温硫化型硅橡胶可作为防水、防潮和防震用灌封材料。
硅橡胶因具有耐热洗涤液性能,目前已广泛用于洗碗机和洗衣机的泵用密封上。硅橡胶适于用作咖啡锅、电气油炸锅和蒸汽熨斗等用具上的垫圈。立体声耳机耳部和头部的衬垫改用硅橡胶,能排除外界杂音,且柔软舒适。
(3)宇航工业
硅橡胶是宇航工业中不可缺少的高性能材料,它能承受太空的超冷和返回大气层的灼热,延长飞机零件寿命,降低检修保养费用,减少意外事故。主要用于飞机机体孔穴密封件、电接头、密封开关、防尘和防水罩、垫圈垫片、喷气式引擎和液压装置的“O”型密封环、氧气面罩、调控膜片、热空气导管和雷达无线减震器等。耐烧灼硅橡胶适用于作火箭燃油阀门、动力源电缆和火箭发射井盖涂层,以免受火箭喷射流的烧灼。室温硫化硅橡胶可作为机体气密性密封、窗框密封和防震、防潮灌封材料。
(4)建筑工业
硅橡胶具有良好的耐候性和施工性,作为粘接密封剂在建筑工业中得到了广泛应用,超过了其它类型的密封剂。近年来,又开发了低模量高伸长型双组分密封剂,它用于接缝移动大的混凝土预制件和幕墙等大型构件。室温硫化硅橡胶还用于石棉水泥板连接处的密封、浴室砖缝和盥洗用具的密封。随着今后橡胶价格的下降,将进一步扩大应用范围,如在公路接缝的应用中替代沥青和氯丁橡胶。高温硫化型硅橡胶海绵条用作建筑物的门窗密封嵌条。
(5)医疗领域
硅橡胶具有良好的生物相容性,对机体反应小,性能稳定,血凝性低,能承受高温高压多次蒸煮,而且能加工成各种形状的制品,如薄膜、海绵、气囊,是目前医学上应用广的一种材料。
(6)其它领域
除了上述各种应用外,硅橡胶在纺织、印刷、机械、塑料、化学、造纸及食品和化妆等领域的应用也明显增加。典型的产品是用硅橡胶制成的辊筒,用作织物、塑料的热定型、压纹、压延和复印机的定影。硅橡胶薄膜制成的气调窗已用于贮存果品蔬菜。此外,硅橡胶在纺织高温设备以及在碱、次氯酸钠和双氧水浓度较高的设备上作密封材料也取得良好的效果。
7、硅橡胶研究的新进展
硅橡胶具有的耐高低温、耐臭氧、耐氧、耐光和耐候老化性能,优良的电缘性能,的表面性能和生理惰性以及高透气性,应用范围广泛。但硅橡胶的拉伸强度和撕裂强度偏低,耐酸碱性较差,制造复杂产品时加工工艺性能也较差,近年来世界各国为此进行了许多改进研究工作,并取得了一些成果。
(1)利用有机硅与其它单体或聚合物的共聚(共混),获得了新的聚合(共混)物。例如,有机硅与聚碳酸酯的嵌段共聚物可作为选择性透气膜;有机硅与乙丙橡胶共混物的特性介于硅橡胶与乙丙橡胶之间;将硅橡胶与EVA共混,制得的共混物具有优良的物理性能、电性能、耐高温老化性能和热收缩性,经过适当配合可赋予优良的阻燃性能。利用耐高温的硅橡胶与高拉伸强度的PMMA制造互穿聚合物网格,改善了硅橡胶的强度和PMMA的耐热性,通过合成聚二甲基硅氧烷(PDMS)/聚苯乙烯(PS)互穿聚合物网络,提高了有机硅网络的力学和弹性性能。
(2)通过改进配合技术,研制出高强度、高抗撕裂、低压缩变形等性能良好以及耐高温、耐温、阻燃、导热和热收缩硅橡胶等各种性强的新品种。
纯硅橡胶不具备大多数应用所要求的机械强度,因此需要增强。传统的增强方法是在硅橡胶固化之前加入补强填料,然后进行混炼、硫化等工艺。但耗时、耗能,污染环境,而且控制填料在胶料中的分散和聚集的程度。研究表明,沉淀法白炭黑、沉淀法二氧化钛和铁氧体、沸石和氧化铝等填料对硅橡胶有较好的增强作用。
(3)在改善加工性能方面,研制了不需二段硫化的硅橡胶、颗粒硅橡胶(又称粉末橡胶) 以及基于含乙烯基聚硅氧烷和含氢硅氧烷之间的催化加成反应,发展了硅橡胶液体注射成型系统。采用加成型双组分体系,研制成触变性好、施工性能和使用方便的腻子型制模硅橡胶。
关键词:半导体芯片,胶粘剂(胶水、粘接剂),胶接工艺,胶粘技术
引言:胶接是通过具有黏附能力的物质,把同种或不同种材料牢固地连接在起的方法。具有黏附能力的物质称为胶粘剂或黏合剂,被胶接的物体称为被粘物,胶粘剂和被黏物构成的组件称为胶接接头。其主要优点是操作简单、生产率高;工艺灵活、、简便;接头、牢固、美观产品结构和加工工艺简单;省材、省力、成本低、变形小。容易实现修旧利废接技术可以有效地应用于不同种类的金属或非金属之间的联接等。胶水的固化方式,一般有以下几种:1、常温固化;2、加热固化;3、UV固化;4、复合型固化。
工业领域,从汽车电子和消费电子到电力运输和航空航天应用,几乎的电子设备都需要有效的热管理——帮助电子零部件转移热量、降低功耗、正常功能。而在电子设备多功能化和小型化需求的推动下,无论是现代功率半导体元件还是电控单元,它们的发展方向都是将更多的功能集成在更小的模块中。这就导致电子设备的工作温度不断上升。因此,热管理显得越发重要,热界面材料 (TIM) 更在其中发挥了不容小觑的作用。
半导体封装
一
定义
半导体封装是指将通过测试的晶圆按照产品型号及功能需求加工得到独立芯片的过程。封装过程为:来自晶圆前道工艺的晶圆通过划片工艺后被切割为小的晶片(Die),然后将切割好的晶片用胶水贴装到相应的基板(引线框架)架的小岛上,再利用超细的金属(金锡铜铝)导线或者导电性树脂将晶片的接合焊盘(Bond Pad)连接到基板的相应引脚(Lead),并构成所要求的电路;然后再对独立的晶片用塑料外壳加以封装保护,塑封之后还要进行一系列操作,封装完成后进行成品测试,通常经过入检Incoming、测试Test和包装Packing等工序,入库出货。
半导体制造的工艺过程由晶圆制造(Wafer Fabr ication)、晶圆测试(wafer Probe/Sorting)、芯片封装(Assemble)、测试(Test)以及后期的成品(Finish Goods)入库所组成。半导体器件制作工艺分为前道和后道工序,晶圆制造和测试被称为前道(Front End)工序,而芯片的封装、测试及成品入库则被称为后道(Back End)工序,前道和后道一般在不同的工厂分开处理。前道工序是从整块硅圆片入手经多次重复的制膜、氧化、扩散,包括照相制版和光刻等工序,制成三管、集成电路等半导体元件及电等,开发材料的电子功能,以实现所要求的元器件特性。后道工序是从由硅圆片分切好的一个一个的芯片入手,进行装片、固定、键合联接、塑料灌封、引出接线端子、按印检查等工序,完成作为器件、部件的封装体,以确保元器件的性,并便于与外电路联接。
二
半导体制造工艺和流程
晶圆制造:晶圆制造主要是在晶圆上制作电路与镶嵌电子元件(如电晶体、电容、逻辑闸等),是所需技术复杂且资金投入多的过程。以微处理器为例,其所需处理步骤可达数百道,而且所需加工机器且昂贵。虽然详细的处理程序是随着产品种类和使用技术的变化而不断变化,但其基本处理步骤通常是晶圆先经过适当的清洗之后,接着进行氧化及沉积处理,进行微影、蚀刻及离子植入等反复步骤,完成晶圆上电路的加工与制作。晶圆测试:晶圆经过划片工艺后,表面上会形成一道一道小格,每个小格就是一个晶片或晶粒(Die),即一个独立的集成电路。在一般情况下,一个晶圆上制作的晶片具有相同的规格,但是也有可能在同一个晶圆上制作规格等级不同的晶片。晶圆测试要完成两个工作:一是对每一个晶片进行验收测试,通过针测仪器(Probe)检测每个晶片是否合格,不合格的晶片会被标上记号,以便在切割晶圆的时候将不合格晶片筛选出来;二是对每个晶片进行电气特性(如功率等)检测和分组,并作相应的区分标记。芯片封装:首先,将切割好的晶片用胶水贴装到框架衬垫(Substrate)上;其次,利用超细的金属导线或者导电性树脂将晶片的接合焊盘连接到框架衬垫的引脚,使晶片与外部电路相连,构成特定规格的集成电路芯片(Bin);对独立的芯片用塑料外壳加以封装保护,以保护芯片元件免受外力损坏。塑封之后,还要进行一系列操作,如后固化(Post Mold Cure)、切筋(Trim)、成型(Form)和电镀(Plating)等工艺。芯片测试:封装好的芯片成功经过烤机(Burn In)后需要进行深度测试,测试包括初始测试(Initial Test)和测试(Final Test)。初始测试就是把封装好的芯片放在各种环境下测试其电气特性(如运行速度、功耗、频率等),挑选出失效的芯片,把正常工作的芯片按照电气特性分为不同的级别。测试是对初始测试后的芯片进行级别之间的转换等操作。成品入库:测试好的芯片经过半成品仓库后进入的终加工,包括激光印字、出厂质检、成品封装等,入库。
三
封装的功能
封装基本的功能是保护电路芯片免受周围环境的影响(包括物理、化学的影响)。所以,在初的微电子封装中,是用金属罐(Metal Can)作为外壳,用与外界隔离的、气密的方法,来保护脆弱的电子元件。但是,随着集成电路技术的发展,尤其是芯片钝化层技术的不断改进,封装的功能也在慢慢异化。一般来说顾客所需要的并不是芯片,而是由芯片和PKG构成的半导体器件。PKG是半导体器件的外缘,是芯片与实装基板间的界面。因此无论PKG的形式如何,封装主要的功能应是芯片电气特性的保持功能。通常认为,半导体封装主要有电气特性的保持、芯片保护、应力缓和及尺寸调整配合四大功能,它的作用是实现和保持从集成电路器件到系统之间的连接,包括电学连接和物理连接。目前,集成电路芯片的I/0线越来越多,它们的电源供应和信号传送都是要通过封装来实现与系统的连接。芯片的速度越来越快,功率也越来越大,使得芯片的散热问题日趋严重,由于芯片钝化层质量的提高,封装用以保护电路功能的作用其重要性正在下降。芯片电气特性的保持功能,通过PKG的进步,满足不断发展的高性能、小型化、高频化等方面的要求,确保其功能性。芯片保护功能,PKG的芯片保护功能很直观,保护芯片表面以及连接引线等,使在电气或物理等方面相当柔嫩的芯片免受外力损害及外部环境的影响。性。应力缓和功能,由于热等外部环境的影响或者芯片自身发热等都会产生应力,PKG缓解应力,发生损坏失效,性。尺寸调整配合(间距变化)功能,由芯片的微细引线间距调整到实装基板的尺寸间距,从而便于实装操作。例如,从亚微米(目前已小于 0.13μm)为特征尺寸的芯片到以10μm为单位的芯片电凸点,再到以100μm为单位的外部引线端子,到以mm为单位的实装基板,都是通过PKG来实现的。在这里PKG起着由小到大、由难到易、由复杂到简单的变换作用。从而可使操作费用及资材费用降低,而且提高工作效率和性。实用性或通用性。
四
微电子封装的三个层次
一级封装:一级封装是用封装外壳将芯片封装成单芯片组件(SCM)和多芯片组件(MCM)。半导体芯片和封装体的电学互联,通常有三种实现途径,引线键合(WB)、载带自动焊(TAB)和倒装焊(Flip Chip),一级封装的可以使用金属、陶瓷,塑料(聚合物)等包封材料。封装工艺设计需要考虑到单芯片或者多芯片之间的布线,与PCB节距的匹配,封装体的散热情况等。二级封装:二级封装是印刷电路板的封装和装配,将一级封装的元器件组装到印刷电路板(PCB)上,包括板上封装单元和器件的互连,包括阻抗的控制、连线的精细程度和低介电常数材料的应用。除了要求外,这一级封装一般不单独加封装体,具体产品如计算机的显卡,PCI数据采集卡等都属于这一级封装。如果这一级封装能实现某些完整的功能,需要将其安装在同一的壳体中,例如Ni公司的USB数据采集卡,的外置USB声卡等。三级封装:三级封装是将二级封装的组件查到同一块母板上,也就是关于插件接口、主板及组件的互连。这一级封装可以实现密度更高,功能更全组装,通常是一种立体组装技术。
例如一台PC的主机,一个NI公司的PXI数据采集系统,汽车的GPS导航仪,这些都属于三级微电子封装的产品。微电子封装工程和电子基板、微电子封装是一个复杂的系统工程,类型多、范围广,涉及各种各样材料和工艺。可按几何维数将电子封装分解为简单的“点、线、面、体、块、板”等。电子基板是半导体芯片封装的载体,搭载电子元器件的支撑,构成电子电路的基盘,按其结构可分为普通基板、印制电路板、模块基板等几大类。其中PCB在原有双面板、多层板的基础上,近年来又出现积层(build-up)多层板。模块基板是指新兴发展起来的可以搭载在PCB,以BGA、CSP、TAB、MCM为代表的封装基板(Package Substrate,简称PKG基板)。小到芯片、电子元器件,大到电路系统、电子设备整机,都离不开电子基板。近年来在电子基板中,高密度多层基板所占比例越来越大。微电子封装所涉及的各个方面几乎都是在基板上进行或与基板相关。在电子封装工程所涉及的四大基础技术,即薄厚膜技术、微互连技术、基板技术、封接与封装技术中,基板技术处于关键与核心。随着新型高密度封装形式的出现,电子封装的许多功能,如电气连接,物理保护,应力缓和,散热防潮,尺寸过渡,规格化、标准化等,正逐渐部分或的由封装基板来承担。微电子封装的范围涉及从半导体芯片到整机,在这些系统中,生产电子设备包括6个层次,也即装配的6个阶段。我们从电子封装工程的角度,按惯一般称层次1为零级封装;层次2为一级封装;层次3为二级封装;层次4、5、6为三级封装。
五
电子封装工程的六个阶段
层次1(裸芯片):它是特指半导体集成电路元件(IC芯片)的封装,芯片由半导体厂商生产,分为两类,一类是系列标准芯片,另一类是针对系统用户要求的芯片,即未加封装的裸芯片(电的制作、引线的连接等均在硅片完成)。层次2(封装后的芯片即集成块):分为单芯片封装和多芯片封装两大类。前者是对单个裸芯片进行封装,后者是将多个裸芯片装载在多层基板(陶瓷或有机)上进密性封装构成MCM。层次3(板或卡):它是指构成板或卡的装配工序。将多个完成层次2的单芯片封装和MCM,实装在PCB板等多层基板上,基板周边设有插接端子,用于与母板及其它板或卡的电气连接。层次4(单元组件):将多个完成层次3的板或卡,通过其上的插接端子搭载在称为母板的大型PCB板上,构成单元组件。层次5(框架件):它是将多个单元构成(框)架,单元与单元之间用布线或电缆相连接。层次6(总装、整机或系统):它是将多个架并排,架与架之间由布线或电缆相连接,由此构成大型电子设备或电子系统。封装基板和封装分级:从硅圆片制作开始,微电子封装可分为0、1、2、3四个等级,涉及上述六个层次,封装基板(PKG基板或Substrate)技术现涉及1、2、3三个等级和2~5的四个层次。封装基板主要研究前3个级别的半导体封装(1、2、3级封装),0级封装暂与封装基板无关,因此封装基板一般是指用于1级2级封装的基板材料,母板(或载板)、刚挠结合板等用于三级封装。
胶水(胶粘剂)の紹介
一
胶粘剂的组成
现在使用的胶粘剂均是采用多种组分合成树脂胶粘剂,单一组分的胶粘剂已不能满足使用中的要求。合成胶粘剂由主剂和助剂组成,主剂又称为主料、基料或粘料;助剂有固化剂、稀释剂、增塑剂、填料、偶联剂、引发剂、增稠剂、防老剂、阻聚剂、稳定剂、络合剂、乳化剂等,根据要求与用途还可以包括阻燃剂、发泡剂、消泡剂、着剂和防霉剂等成分。
1.主剂主剂是胶粘剂的主要成分,主导胶粘剂粘接性能,同时也是区别胶粘剂类别的重要标志。主剂一般由一种或两种,甚至三种高聚物构成,要求具有良好的粘附性和润湿性等。通常用的粘料有:
·天然高分子化合物如蛋白质、皮胶、鱼胶、松香、桃胶、骨胶等。2)合成高分子化合物①热固性树脂,如环氧树脂、酚醛树脂、聚氨酯树脂、脲醛树脂、有机硅树脂等。②热塑性树脂,如聚醋酸乙烯酯、聚乙烯醇及缩醛类树脂、聚苯乙烯等。③弹性材料,如丁腈胶、氯丁橡胶、聚硫橡胶等。④各种合成树脂、合成橡胶的混合体或接枝、镶嵌和共聚体等。
2.助剂为了满足特定的物理化学特性,加入的各种辅助组分称为助剂,例如:为了使主体粘料形成网型或体型结构,增加胶层内聚强度而加入固化剂(它们与主体粘料反应并产生交联作用);为了加速固化、降低反应温度而加入固化促进剂或催化剂;为了提高耐大气老化、热老化、电弧老化、臭氧老化等性能而加入防老剂;为了赋予胶粘剂某些特定性质、降低成本而加入填料;为降低胶层刚性、增加韧性而加入增韧剂;为了改善工艺性降低粘度、延长使用寿命加入稀释剂等。包括:1)固化剂:固化剂又称硬化剂,是促使黏结物质通过化学反应加快固化的组分,它是胶粘剂中主要的配合材料。它的作用是直接或通过催化剂与主体聚合物进行反应,固化后把固化剂分子引进树脂中,使原来是热塑性的线型主体聚合物变成坚韧和坚硬的体形网状结构。固化剂的种类很多,不同的树脂、不同要求采用不同的固化剂。胶接的工艺性和其使用性能是由加人的固化剂的性能和数量来决定的。2)增韧剂:增韧剂的活性基团直接参与胶粘剂的固化反应,并进入到固化产物形成的一个大分子的链结构中。没有加入增韧剂的胶粘剂固化后,其性能较脆,易开裂,实用性差。加入增韧剂的胶接剂,均有较好的抗冲击强度和抗剥离性。不同的增韧剂还可不同程度地降低其内应力、固化收缩率,提高低温性能。常用的增韧剂有聚酰胺树脂、合成橡胶、缩醛树脂、聚砜树脂等。3)稀释剂:稀释剂又称溶剂,主要作用是降低胶粘剂粘度,增加胶粘剂的浸润能力,改善工艺性能。有的能降低胶粘剂的活性,从而延长使用期。但加入量过多,会降低胶粘剂的胶接强度、耐热性、耐介质性能。常用的稀释剂有丙酮、漆料等多种与粘料相容的溶剂。4)填料:填料一般在胶黏剂中不发生化学反应,使用填料可以提高胶接接头的强度、抗冲击韧性、耐磨性、耐老化性、硬度、高使用温度和耐热性,降低线膨胀系数、固化收缩率和成本等。常用的填料有氧化铜、氧化镁、银粉、瓷粉、云母粉、石棉粉、滑石粉等。5)改性剂:改性剂是为了改善胶黏剂的某一方面性能,以满足要求而加入的一些组分,如为增加胶接强度,可加入偶联剂,还可以加入防腐剂、防霉剂、阻燃剂和稳定剂等。
二
胶粘剂的分类
(一)、按成分来分:
胶粘剂种类很多,比较普遍的有:脲醛树脂胶粘剂、聚醋酸乙烯胶粘剂、聚丙烯酸树脂胶粘剂,聚丙烯酸树脂、聚氨酯胶粘剂、热熔胶粘剂、环氧树脂胶粘剂、合成胶粘剂等等。
1、有机硅胶粘剂:是一种密封胶粘剂,具有耐寒、耐热、耐老化、防水、防潮、伸缩疲劳强度高、永久变形小、等特点。近年来,此类胶粘剂在国内发展迅速,但目前我国有机硅胶粘剂的原料部分依靠。
2、聚氨酯胶粘剂:能粘接多种材料,粘接后在低温或温时仍能保持材料理化性质,主要应用于制鞋、包装、汽车、磁性记录材料等领域。
3、聚丙烯酸树脂:主要用于生产压敏胶粘剂,也用于纺织和建筑领域。
建筑用胶粘剂:主要用于建筑工程装饰、密封或结构之间的粘接。
4、 热熔胶粘剂:根据原料不同,可分为EVA热熔胶、聚酰胺热熔胶、聚酯热熔胶、聚烯烃热熔胶等。目前国内主要生产和使用的是EVA热熔胶。聚烯烃系列胶粘剂主要原料是乙烯系列、SBS、SIS共聚体。
5、环氧树脂胶粘剂:可对金属与大多数非金属材料之间进行粘接,广泛用于建筑、汽车、电子、电器及日常家庭用品方面
6、脲醛树脂、酚醛、三聚氰胺-甲醛胶粘剂:主要用于木材加工行业,使用后的甲醛释放量高于标准。木材加工用胶粘剂:用于中密度纤维板、石膏板、胶合板和刨花板等
7、合成胶粘剂:主要用于木材加工、建筑、装饰、汽车、制鞋、包装、纺织、电子、印刷装订等领域。目前,我国每年合成胶粘剂近20万吨,品种包括热熔胶粘剂、有机硅密封胶粘剂、聚丙烯酸胶粘剂、聚氨酯胶粘剂、汽车用聚氯乙烯可塑胶粘剂等。同时,每年出口合成胶粘剂约2万吨,主要是聚醋酸乙烯、聚乙烯酸缩甲醛及压敏胶粘剂。
(二)、按用途来分:
1、密封胶粘剂:主要用于门、窗及装配式房屋预制件的连接处。高档密封胶粘剂为有机硅及聚氨酯胶粘剂,中档的为氯丁橡胶类胶粘剂、聚丙烯酸等。建筑用胶粘剂市场上,有机硅胶粘剂、聚氨酯密封胶粘剂应是今后发展的方向,目前其占据建筑密封胶粘剂的销售量为30%左右。
2、建筑结构用胶粘剂:主要用于结构单元之间的联接。如钢筋混凝土结构外部修补,金属补强固定以及建筑现场施工,一般考虑采用环氧树脂系列胶粘剂。
3、汽车用胶粘剂:分为4种,即车体用、车内装饰用、挡风玻璃用以及车体底盘用胶粘剂。
目前我国汽车用胶粘剂年消耗量约为4万吨,其中使用量大的是聚氯乙烯可塑胶粘剂、氯丁橡胶胶粘剂及沥青系列胶粘剂。
4、包装用胶粘剂:主要是用于制作压敏胶带与压敏标签,对纸、塑料、金属等包装材料表面进行粘合。纸的包装材料用胶粘剂为聚醋酸乙烯乳液。塑料与金属包装材料用胶粘剂为聚丙烯酸乳液、VAE乳液、聚氨酯胶粘剂及氰基丙烯酸酯胶粘剂。
5、电子用胶粘剂:消耗量较少,目前每年不到1万吨,大部分用于集成电路及电子产品,现主要用环氧树脂、不饱和聚酯树脂、有机硅胶粘剂。用于5微米厚电子元件的封端胶粘剂我们可以自己供给,但3微米厚电子元件用胶粘剂需从国外。
6、制鞋用胶粘剂:年消费量约为12.5万吨,其中氯丁橡胶类胶粘剂需要11万吨,聚氨酯胶粘剂约1.5万吨。由于氯丁橡胶类胶粘剂需用苯类作溶剂,而苯类对人体有害,应限制发展,为满足制鞋业发展需求,采用聚氨酯系列胶粘剂将是方向。
(三)、按物理形态来分:
1、密封胶 :1.1 按密封胶硫化方法分类
(1)湿空气硫化型密封胶 :此类密封胶系列用空气中的水分进行硫化。主要包括单组分的聚氨酯、硅橡胶和聚硫橡胶等。其聚合物基料中含有活性基团,能同空气中的水发生反应,形成交联键,使密封胶硫化成网状结构。(2)化学硫化型密封胶 :双组分的聚氨酯、硅橡胶、聚硫橡胶、氯丁橡胶和环氧树脂密封胶都属于这一类,一般在室温条件下完成硫化。某些单组分的氯磺化聚乙烯和氯丁橡胶密封胶以及聚氯乙烯溶胶糊状密封胶则须在加热条件下经化学反应完成硫化。(3)热转变型密封胶 :用增塑剂分散的聚氯乙烯树脂和含有沥青的橡胶并用的密封胶是两个不同类型的热转变体系。乙烯基树脂增塑体在室温下是液态悬浮体,通过加热转化为固体而硬化;而橡胶-沥青并用密封胶则为热熔性的。(4)氧化硬化型密封胶 :表面干燥的嵌逢或安装玻璃用密封胶主要以干性或半干性植物油或动物油为基料,这类油料可以是精制聚合的、吹制的或化学改性的。(5)溶剂挥发凝固型密封胶 :这是以溶剂挥发后无粘性高聚物为基料的密封胶。这一类密封胶主要有丁基橡胶、高分子量聚异丁烯、一定聚合程度的丙烯酸酯、氯磺化聚乙烯以及氯丁橡胶等密封胶。
1.2 按密封胶形态分类
(1)膏状密封胶 :此类密封胶基本上用于静态接缝中,使用期一般为2年或2年以上。通常采用3种主体材料:油和树脂、聚丁烯、沥青。(2)液态弹性体密封胶 : 此类密封胶包括经硫化可形成真正弹性状态的液体聚合物,它们具有承受重复的接缝变形能力。弹性体密封胶所使用的聚合物弹性体包括液体聚硫橡胶、巯端基聚丙烯醚、液体聚氨酯、室温硫化硅橡胶和低分子丁基橡胶等。该类密封胶通常配合成两个组分,使用时将两个组分混合。(3)热熔密封胶:热熔密封胶又叫热施工型密封胶。指以弹性体同热塑性树脂掺合物为基料的密封胶。这类密封胶通常在加热(150~200℃)情况下经一定口型模型直接挤出到接缝中。热施工可改进密封胶对被粘基料的湿润能力,因此对大多数被粘基料具有良好的粘接力。一经放入适当位置,就冷却成型或成膜,成为收缩性很小的坚固的弹性体。热施工密封胶的主体材料主要是异丁烯类聚合物、三元乙丙橡胶和热塑性的苯乙烯嵌段共聚物。它们通常同热塑性树脂如EVA、EEA、聚乙烯、聚酰胺、聚酯等掺合。(4)液体密封胶 :该类密封胶主要用于机械接合面的密封,用以代替固体密封材料即固体垫圈以机械内部流体从接合面泄漏。该类密封胶通常以高分子材料例如橡胶、树脂等为主体材料,再配以填料及其它组分制成。液体密封胶通常分不干性粘着型、半干性粘弹性、干性附着型和干性可剥型等4类。根据具体使用部位及要求选择。
1.3 按密封胶施工后性能分类
(1)固化型密封胶 :固化型密封胶可分成刚性密封胶和柔性密封胶两种类型:a)刚性密封胶硫化或凝固后形成坚硬的固体,很少具有弹性;此类密封胶有的品种既起密封作用又起胶接作用,其代表性密封胶是以环氧树脂、聚酯树脂、聚丙烯酸酯、聚酰胺和聚乙酸乙烯酯等树脂为基料的密封胶。b)柔性密封胶在硫化后保持柔软性。它们一般以橡胶弹性体为基料。柔性变化幅度大,硬度(邵尔A)在10~80范围内。这类密封胶品种是纯橡胶,大多数具有良好胶粘剂的性能。
(2)非固化型密封胶 :这类密封胶是软质凝固性的密封胶,施工之后仍保持不干性状态。通常为膏状,可用刮刀或刷子用到接缝中,可以配合出许多不同粘度和不同性能的密封胶。
2、按胶粘剂硬化方法分类 :低温硬化代号为a;常温硬化代号为b;加温硬化代号为c;适合多种温度区域硬化代号为d;与水反应固化代号为e;厌氧固化代号为f;辐射(光、电子束、放射线)固化代号为g;热熔冷硬化代号为h;压敏粘接代号为i;混凝或凝聚代号为j,其他代号为k。
3、按胶粘剂被粘物分类 :多类材料代号为A;木材代号为B;纸代号为C;天然纤维代号为D;合成纤维代号为E;聚烯烃纤维(不含E类)代号为F;金属及合金代号为G;难粘金属(金、银、铜等)代号为H;金属纤维代号为I,无机纤维代号为J;透明无机材料(玻璃、宝石等)代号为K;不透明无机材料代号为L;天然橡胶代号为M;合成橡胶代号为N;难粘橡胶(硅橡胶、氟橡胶、丁基橡胶)代号为O,硬质塑料代号为P,塑料薄膜代号为Q;皮革、合成革代号为R,泡沫塑料代号为S; 难粘塑料及薄膜(氟塑料、聚乙烯、聚丙烯等)代号为T;生物体组织骨骼及齿质材料代号为U;其他代号为V。
4、胶水状态:无溶剂液体代号为1;2有机溶剂液体代号为2;3水基液体代号为3,4膏状、糊状代号为4,5粉状、粒状、块状代号为5;6片状、膜状、网状、带状代号为6;7丝状、条状、棒状代号为7。
5、其它胶粘剂: (不常用到):金属结构胶、聚合物结构胶、光敏密封结构胶、其它复合型结构胶
热固性高分子胶:环氧树脂胶、聚氨酯(PU)胶、氨基树脂胶、酚醛树脂胶、丙烯酸树脂胶、呋喃树脂胶、间笨二酚-甲醛树脂胶、二甲笨-甲醛树脂胶、不饱和聚酯胶、复合型树脂胶、聚酰亚胺胶、脲醛树脂胶、其它高分子胶
密封胶粘剂:室温硫化硅橡胶、环氧树脂密封胶、聚氨酯密封胶、不饱和聚酯类、丙烯酸酯类、密封腻子、氯丁橡胶类密封胶、弹性体密封胶、液体密封垫料、聚硫橡胶密封胶、其它密封胶
热熔胶:热熔胶条、胶粒、胶粉、EVA热熔胶、橡胶热熔胶、聚丙烯、聚酯、聚酰胺、聚胺酯热熔胶、苯乙烯类热熔胶、新型热熔胶、聚乙烯及乙烯共聚物热熔胶、其他热熔胶
水基胶粘剂:丙烯酸乳液、醋酸乙烯基乳液、聚乙烯醇缩醛胶、乳液胶、其它水基胶
压敏胶(不干胶):胶水、胶粘带、无溶剂压敏胶、溶剂压敏胶、固化压敏胶、橡胶压敏胶、丙烯酸酯压敏胶、其它压敏胶
溶剂型胶:树脂溶液胶、橡胶溶液胶、其它溶剂胶
无机胶粘剂:热熔无机胶、自然干无机胶、化学反应无机胶、水硬无机胶、其它无机胶
热塑性高分子胶粘剂:固体高分子胶、溶液高分子胶、乳液高分子胶、单体高分子胶、其它热塑性高分子胶
天然胶粘剂:蛋白质胶、碳水化合物胶粘剂、其他天然胶
橡胶粘合剂:硅橡胶粘合剂、氯丁橡胶粘合剂、丁腈橡胶粘合剂、改性天然橡胶粘合剂、氯磺化聚乙烯粘合剂、聚硫橡胶粘合剂羧基橡胶粘合剂、聚异丁烯、丁基橡胶粘合剂、其它橡胶粘合剂
耐高温胶:有机硅胶、无机胶、高温模具树脂胶、金属高温粘合剂、其它耐高温胶
聚合物胶粘剂:丁腈聚合物胶、聚硫橡胶粘合剂、聚氯乙烯胶粘剂、聚丁二烯胶、过氯乙烯胶粘剂、其它聚合物胶
修补剂:金属修补剂、高温修补剂、紧急修补剂、耐磨修补剂、耐腐蚀修补剂、塑胶修补剂、其它修补剂
医用胶、纸品用胶、导磁胶、防磁胶、防火胶、防淬火胶、防淬裂胶、动物胶、植物胶、矿物胶、食品级胶粘剂、其它胶水。
胶水(胶粘剂)粘接の简介
常用胶粘剂的固化形式
为了便于胶粘剂对被粘物面的浸润,胶粘剂在粘接之前要制成液态或使之变成液态,粘接后,只有变成固态才具有强度。通过适当方法使胶层由液态变成固态的过程称为胶粘剂的固化。而不同的胶粘剂的固化形式则是不同的,常用胶粘剂的固化形式有以下几种:
1、 溶液型胶粘剂的固化:溶液型胶强剂固化过程的实质是随着溶剂的挥发。溶液浓度不断增大,达到一定的强度。溶液胶的固化速度决定于溶剂的挥发速度,还受环境温度、湿度、被粘物的致密程度与含水量、接触面大小等因素的影响。配制溶液胶时应选样特定溶剂改组成混合溶剂以调节固化速度。选用易持发的溶剂,易影响结晶料的结晶速度与程度,甚至造成胶层结皮而降低粘接强度,此外挥发造成的粘接处降温凝水对粘接强度也是不利的。选用的溶剂挥发太慢,固化时间率低,还可能造成胶层中溶剂滞留,对粘接不利。
2、 乳液型胶粘剂的固化:水乳液型胶粘剂是聚合物胶体在水中的分散体,为一种相对稳定体系。当乳液中的水分逐渐渗透到被粘物中并挥发时,其浓度就会逐渐增大,从而因表面张力的作用使胶粒凝聚而固化。环境温度对乳液的凝聚影响很大,温度高时乳液能凝聚成连续的膜,温度太低或低于成膜温度(该温度通常比玻璃化温度略低一点)时不能形成连续的膜,此时胶膜呈白,强度根差。不同聚合物乳液的成膜温度是不同的,因此在使用该类胶粘剂时一定要使环境温度高于其成膜温度,否则粘接效果不好。
3 、热熔胶的固化:热熔胶的固化是一种简单的热传递过程,即加热熔化涂胶粘合,冷却即可固化。固化过程受环境温度影响很大,环境温度低,固化快。为了使热熔胶液能允分湿润被粘物,使用时严格控制熔融温度和晾置时间,对于粘料具结晶性的热熔胶尤应重视,否则将因冷却过头使粘料结晶不而降低粘接强度。
4 、增塑糊型胶粘剂的固化:增塑糊是高分子化合物在增塑剂中的一种不稳定分散体系,其固化基本上是高分子化合物溶解在增塑剂中的过程。这种糊在常温下行一定的稳定性。在加热时(一般在150~209℃)高分子化合物的增塑剂能迅速互溶而凝胶化,提高温度有利于高分子链运动,有利于形成均匀致密的粘接层。但温度过高会引起聚合物分解。
5、反应型胶粘剂的固化:反应型胶粘剂都存在着活性基团,与同化剂、引发剂和其他物理条件的作用下,粘料发生聚合交联等化学反应而固化。按固化介式反应型胶粘剂可分为固化剂固化型、催化剂固化型与引发剂固化型等几种类型。至于光敏固化、辐射同化等胶的固化机制一般属于以上类型中。
二步固化胶水双固化胶水双重固化方式の定义
一
二步固化
分两步固化:预固化,本固化。
二
双固化
有两种固化方式,比如:可以加热或UV或常温等。
三
双重固化
需要两种固化方式才能固化,比如:先UV后常温,或先UV后加热。
半导体芯片类封装胶水の粘接原理
一
粘接理论
粘接是不同材料界面间接触后相互作用的结果。因此,界面层的作用是胶粘科学中研究的基本问题。诸如被粘物与粘料的界面张力、表面自由能、官能基团性质、界面间反应等都影响胶接。胶接是综合性强,影响因素复杂的一类技术,而现有的胶接理论都是从某一方面出发来阐述其原理,所以至今全面唯一的理论是没有的。
1.1 吸附理论:粘接力的主要来源是粘接体系的分子作用力,即范德化引力和氢键力。胶粘与被粘物表面的粘接力与吸附力具有某种相同的性质。胶黏剂分子与被粘物表面分子的作用过程有两个过程:阶段是液体胶黏剂分子借助于布朗运动向被粘物表面扩散,使两界面的性基团或链节相互靠近,在此过程中,升温、施加接触压力和降低胶黏剂粘度等都有利于布朗运动的加强。第二阶段是吸附力的产生。当胶黏剂与被粘物分子间的距离达到10-5Å 时,界面分子之间便产生相互吸引力,使分子间的距离进一步缩短到处于大稳定状态。胶黏剂的性太高, 有时候会严重妨碍湿润过程的进行而降低粘接力。
1.2 化学键形成理论:化学键理论认为胶黏剂与被粘物分子之间除相互作用力外,有时还有化学键产生,学键的强度比范德化作用力高得多;化学键形成不仅可以提高粘附强度,还可以克服脱附使胶接接头破坏的弊病。但化学键的形成并不普通,要形成化学键满足一定的量子化条件,所以不可能做到使胶黏剂与被粘物之间的接触点都形成化学键。况且,单位粘附界面上化学键数要子间作用的数目少得多,因此粘附强度来自分子间的作用力是不可忽视的。
1.3 扩散理论:两种聚合物在具有相容性的前提下,当它们相互紧密接触时,由于分子的本身或其连段通过热运动引起的扩散作用。这种扩散作用是穿越胶黏剂、被粘物的界面交织进行的。扩散的结果导致界面的消失和过渡区的产生。粘接体系借助扩散理论不能解释聚合物材料与金属、玻璃或其他硬体胶粘,因为聚合物很难向这类材料扩散。在粘接体系中,适当降低胶黏剂的分子量有助于提高扩散系数,改善粘接性能。不同的分子结构形态聚合物分子链排列堆集的紧密程度不同,其扩散行为有显著不同。由于聚合物的扩散作用还受到两聚合物接触时间、粘接温度等作用因素的影响。两聚合物相互粘接时,粘接温度越高,时间越长,其扩散作用也越强,由扩散作用导致的粘接力就越高。
1.4 静电理论:当胶黏剂和被粘物体系是一种电子的接受体 -供给体的组合形式时,电子会从供给体(如金属)转移到接受体(如聚合物),在界面区两侧形成了双电层从而产生了静电引力。在干燥环境中从金属表面剥离粘接胶层时,可用仪器或肉眼观察到放电的光、声现象,实了静电作用的存在。但静电作用仅存在于能够形成双电层的粘接体系,因此不具有普遍性。此外,有些学者指出:双电层中的电荷密度达到1021电子/厘米2时,静电吸引力才能对胶接强度产生较明显的影响。而双电层栖移电荷产生密度的大值只有 1019电子/厘米2(有的认为只有1010-1011 电子/厘米2)。因此,静电力虽然确实存在于某些的粘接体系,但决不是起主导作用的因素。
1.5机械作用力理论:从物理化学观点看,机械作用并不是产生粘接力的因素,而是增加粘接效果的一种方法。胶黏剂渗透到被粘物表面的缝隙或凹凸之处,固化后在界面区产生了啮合力,这些情况类似钉子与木材的接合或树根植入泥土的作用。机械连接力的本质是摩擦力。在粘合多孔材料、纸张、织物等时,机构连接力是很重要的,但对某些坚实而光滑的表面,这种作用并不显著。
二
影响粘接强度の因素
除了湿润,吸附过程、静电作用及扩散作用的过程外,还有很多因素对粘接强度产生影响。
2.1 表面粗糙度及表面处理:被粘物表面的粗糙程度是产生机械粘接力的源泉。机械粘接力是通过加强湿润及吸附作用而得到的。被粘物表面增加粗糙度等于增加其表面积。液体在粗糙表面的接触角有别于在光滑表面的接触角。试验明,有粘接体系呈良好湿润状态的前提下,糙化增大了实际面积,有利于粘接强度的提高。如果被粘物呈“毛羽”状态,可显著提高粘接强度。当粘接剂良好的浸润被粘材料表面,其接触角表面的粗糙化有利于提高胶粘剂液体对表面的浸润程度,增加了胶粘剂与被粘材料的接触点密度,从而有利于提高粘接强度;当胶粘剂对被粘材料浸润不良即时,表面粗糙化就不利于粘接强度的提高。粘接前的表面处理是粘接成功的关键,其目的是能获得牢固耐久的接头。
2.2 界面层的强弱:弱界面层的产生是由于被粘物,胶黏剂,环境或它们共同作用的结果,当被粘物,胶粘剂及环境中的低分子物或杂质通过渗析、吸附及聚集过程,在部分或界面内产生了这些低分子物的富集区,这就是弱界面层。粘接接头在外力作用下的破坏过程发生于弱界面层。这就是出现粘接界面破坏并且粘接力严重下降的原因。
2.3 内应力:粘接体系存在的内应力一般有两个来源,一是胶层在固化过程中因体积收缩面产生的收缩应力。二是由于胶层与被粘物的膨胀系数不同,在受热或冷却时产生的热应力。1)收缩应力当胶黏剂固化时,因挥发,冷却和化学反应而体积发生收缩,引起收缩应力。当收缩力超过黏附力时,表观粘接强度就要显著下降。此外,粘接端部或胶黏剂的空隙周围应力分布不均匀也产生应力集中,增加了裂口出现的可能。有结晶性的胶黏剂在固化时,因洁晶而使体积收缩较大也造成接头的内应力,如在其中加入一定量能结晶或改变结晶大小的橡胶态物质。那么就可以减小内应力。2)热应力:在高温下,熔融的树脂冷却固化会产生体积收缩,在界面上由于粘接的约束而产生内应力。在分子链间有滑移的可能性时,则产生的内应力消失。影响热应力的主要因素有热膨胀系数、室温和时间的温差以及弹性差量。为了缓和因膨胀系数差而引起的热应力,应使胶黏剂的热膨胀系数接近于被粘物的热膨胀系数,可添加该种材料的粉末,或其他材料的纤维或粉末进行调整;可以通过加入各种橡胶及增塑剂,还可以改变固化工艺,如采用逐步升温、随炉冷却等方法。
2.4 环境的作用:被粘物表面主要是受周围介质的污染。例如被粘物表面有油迹时,由于油层的表面张力低于胶黏剂的表面张力,故油层比胶黏剂更容易湿润被粘物的表面,并生成一个不易清除的弱界面层,它的存在大大降低了胶黏剂对被粘物表面的亲和力。周围环境中,水分的作用更具普遍性。金属、玻璃、陶瓷等高表面能材料的表面对水的吸附力很强,某些被粘物对水产生化学吸附要加热到1000℃以上才能去除去。性表面对水的吸附力比一般胶黏剂强,吸附水分不能被胶黏剂解吸。水分或其他低分子物对胶黏剂本身还有渗透、腐蚀和膨胀作用,这些作用均会减低胶黏剂的粘结力。
2.5 渗透及迁移:受环境气氛的作用,已粘接的接头常常被渗进一些其他低分子。例如,接头在潮湿环境或水下,水分子渗透入胶层;聚合物胶层在有机溶剂中,溶剂分子渗透入聚合物中。低分子的透入首先使胶层变形,然后进入胶层于被粘物界面使胶层强度降低,从而导致粘接的破坏。渗透不仅从胶层边沿开始,对于多孔性被粘物,低分子物可以从被粘物的空隙、毛细管或裂缝中渗透到被粘物中,进而浸入到界面上,使接头出现缺陷乃至破坏。渗透不仅会导致接头的物理性能下降,而且由于低分子物的渗透使界面发生化学变化,生成不利于粘接的锈蚀区,使粘接失效。2.6 压力及胶层厚度:在粘接时,向粘接面施加压力,使粘接剂更容易充满被粘体表面的坑洞,甚至流入深孔和毛细管中,减少粘接缺陷。对于黏度较小的胶黏剂,加压时会过度地流淌,造成缺胶。因此应待黏度较大时再施加压力,也促使被粘体表面上的气体逸出,减少粘接区的气孔。对于较稠的或固体的胶黏剂,在粘接时施加压力是必不可少的手段。在这种情况下,常常需要适当地升高温度,以降低胶黏剂的稠度或使胶黏剂液化。
粘接是不同材料界面间接触后相互作用的结果。因此,界面层的作用是胶粘科学中研究的基本问题。诸如被粘物与粘料的界面张力、表面自由能、官能基团性质、界面间反应等都影响胶接。胶接是综合性强,影响因素复杂的一类技术,而现有的胶接理论都是从某一方面出发来阐述其原理,所以至今全面唯一的理论是没有的。
半导体芯片封装胶水のTIM1热界面材料---KF7777
一
简介
半导体芯片作为电子设备的大脑,也有同样的发展趋势,体积减小,功率增大,处理运算速度提升,相应地发热量增大,设备运行温度也越来越高。为了芯片在发热状态下也能维持正常功能,需要借助TIM材料将芯片和冷却装置(散热盖)连接在一起,通过TIM材料,将热传递出去,倒装芯片中应用在芯片和散热盖之间的热界面材料 (TIM1)。
为了芯片部过热,需要在芯片上涂上导热胶,再盖上散热盖,压合后形成一层均匀的导热层,建立从芯片到散热片通畅的热传导通路,将芯片发出的热量传递到外界。导热粘结胶拥有良好的剪切变稀性,在压力下可以形成均匀的薄层——这是达到热传导的先决条件。
二
KF-7777