详细说明
光纤厂家_光缆厂家_光纤光缆厂家 光纤光缆-简介传送光波的介质波导。光纤是由成同心圆的双层透明介质构成的一种纤维
光纤光缆
。使用最广泛的介质材料是石英玻璃(SiO2)。内层介质称为纤芯,其折射率高于外层介质(称为包层)。通过在石英玻璃中掺锗、磷、氟、硼等杂质的方法调节纤芯或包层的折射率。通信用光纤的传输波长主要为0.8~1.7微米的近红外光。光纤的芯径因类型而异,通常为数微米到100微米,外径大多数约为 125微米。它的外面有塑料被覆层。光缆(图2)由单根或多根光纤组合并加以增强和保护制成。光缆可以在各种环境下使用。光缆的制造方法与电缆相似。
光纤光缆
光纤通信是现代信息传输的重要方式之一。它具有容量大、中继距离长、保密性好、不受电磁干扰和节省铜材等优点。
编辑本段发展概况
用玻璃纤维传光已有30多年。初期的光纤应用仅限于某些光学机械和医疗设备(如灯光导引及胃镜等),传输的是可见光,衰减高达1000分贝/公里。1966年,高锟首先提出用石英基玻璃纤维进行长距离光信息传输的设想。1970年在美国用化学气相沉积法制成了高纯石英光纤,其衰减降为20分贝/公里,从而使长距离传输成为现实。其后,光纤的衰减迅速下降,到70年代后期已降至0.2分贝/公里的理论极限水平。光纤的带宽不断增加,到80年代初带宽达到数百吉赫·公里的单模光纤已可供实用。已研制成中继距离超过100公里,容量达数百兆比/秒的光纤通信系统。光纤通信设备制造已经发展成为一个新兴的工业部门。光纤中光波强度和相位随温度、电场、磁场等物理量的改变而变化的特点,已被用于高灵敏的遥测传感器。
编辑本段基本原理
光纤传输基于可用光在两种介质界面发生全反射的原理。图3为突变型光纤,n1为纤芯介质的折射率,n2为包层介质的折射率,n1大于n2,进入纤芯的光到达纤芯与包层交界面(简称芯-包界面)时的入射角大于全反射临界角θc时,就能发生全反射而无光能量透出纤芯,入射光就能在界面经无数次全反射向前传输。
编辑本段光纤光缆
当光纤弯曲时,界面法线转向,入射角度小,因此一部分光线的入射角度变得小于θc而不能全反射。但原来入射角较大的那些光线仍可全反射,所以光纤弯曲时光仍能传输,但将引起能量损耗。通常,弯曲半径大于50~100毫米时,其损耗可忽略不计。微小的弯曲则将造成严重的“微弯损耗”。
人们常用电磁波理论进一步研究光纤传输的机制,由光纤介质波导的边界条件来求解波动方程。在光纤中传播的光包含有许多模式,每一个模式代表一种电磁场分布,并与几何光学中描述的某一光线相对应。光纤中存在的传导模式取决于光纤的归一化频率ν值
公式
式中NA为数值孔径,它与纤芯和包层介质的折射率有关。ɑ为纤芯半径,λ为传输光的波长。光纤弯曲时,发生模式耦合,一部分能量由传导模转入辐射模,传到纤芯外损耗掉。
性能 光纤的主要参数有衰减、带宽等。
编辑本段光纤衰减
造成光纤衰减的因素有散射损耗、吸收损耗和微弯损耗等。散射损耗主要由瑞利散射产生,它是由玻璃的不规则分子结构引起的微观折射率波动所造成的,是光纤的固有损耗,也是光纤衰减的最低限。它与λ4成反比。在波长小于0.8微米时,瑞利散射损耗迅速上升,限制了光纤的使用。光纤基质材料SiO2和掺杂氧化物分子的本征吸收损耗又使光纤的衰减,在波长大于1.7微米时,迅速增大。因此,这类光纤的使用波长就被限制在0.8~1.7微米范围内。在这一范围内,衰减主要是石英玻璃中所含的杂质Fe+ +、Cu+ + 等过渡金属离子和OH-。的吸收损耗造成的。随着纯化工艺的改进,杂质吸收损耗已被基本上消除,从而达到了瑞利散射损耗的极限。光纤的不规则微小弯曲引起模式耦合,造成微弯损耗,因此在加工和使用中应尽量避免光纤微弯。