保定铝合金牺牲阳极的执行标准
阳极材料按用途主要分为三类:
1. 铝合金牺牲阳极:多用于海洋或容器储罐内的阴极保护t
2. 锌合金牺牲阳极:多用于土壤环境应用条件土壤电阻率≤15Ω·m
3. 镁合金牺牲阳极:多用于土壤环境,应用条件土壤电阻率≥15Ω·m
工程中常用牺牲阳极材料主要有镁和镁合金、锌和锌合金、铝合金三大类,在个别项目中,由于情况特殊而采用铁阳极或锰阳极作为牺牲阳极进行阴极保护,牺牲阳极因具有很负的开路电位和很大的驱动电压等性能而广泛的应用于土壤、海水。海泥及工业水中对金属结构物进行阴极保护,但它的电流效率低,是博亿达缺点,锌牺牲阳极的开路电位不如镁基阳极那么负,驱动电压不大,但它仍能在低电阻率土壤、海水、海泥环境中广泛用于牺牲阳极保护,铝牺牲阳极的开路电位比锌阳极略负,它的理论电容量远高于锌基和镁基阳极,具有独特的性能。但是它易于钝化的金属材料,在其表面容易产生致密、附着性好的连续氧化膜,甚至产生一层高电阻硬壳,阻碍金属的活化溶解。目前铝基演技广泛应用于海水中保护船舶、平台、码头等海洋结构物,在海泥。盐水系统也获得了成功的应用,但尚不能应用于土壤环境中。
自然电位是金属埋入土壤后,在无外部电流影响时的对地电位。自然电位随着金属结构的材质、表面状况和土质状况,含水量等因素不同而异, 一般有涂层埋地管道的自然电位在-0.4~0.7 V CSE 之间,在雨季土壤湿润时,自然电位会偏负,一般取平均值 -0.55V。 3.2.小保护电位金属达到保护所需要的电位值。一般认为,金属在电解质溶液中,化电位达到阳区的开路电位时,就达到了保护。对于铜饱和硫酸铜参比电来说,小保护电位为-0.85伏;相对于稿纯锌参比电来说,小保护电位应该是-250毫伏。 3.3.大保护电位
保定铝合金牺牲阳极的执行标准
在同一电解质中,不同的金属具有不同的腐蚀电位 ,如轮船船体是钢,推进器是青铜制成的,铜的电位比钢高,所以电子从船体流向青铜推进器,船体受到腐蚀,青铜器得到保护。钢管的本体金属和焊缝金属由于成分不一样, 两者的腐蚀电位差有时可达0.275V,埋入地下后,电位低的部位遭受腐蚀。新旧管道连接后,由于新管道腐蚀电位低,旧管道电位高,电子从新管道流向旧管道,新管道首先腐蚀。同一种金属接触不同的电解质溶液(如土壤),或电解质的浓度、温度、气体压力、流速等条件不同,也会造成金属表面各点电位的不同。 2.2、参比电
保定铝合金牺牲阳极的执行标准
另外, 如果管道附近有其他缘体或岩石存在, 也会影响电流的流动, 对管道的保护电流起到屏蔽作用. 因此, 当管道通过岩石地带时, 应采取措施, 如: 采用柔性阳或带状阳, 阴保护电流顺利的到达管道表面..区域性阴保护时, 土壤的屏蔽对于位于开阔地带的管道, 土壤不会对阴保护电流产生屏蔽. 但对于站内的管网和管群, 可能会有这种屏蔽问题. 如图 2所示, 由于管道密度较大, 尤其当管道防腐层不好时, 电流的泄漏会使其附近区域的土壤电位随之降低. 此时, 如果参比电距管道较远, 所测电位并不能说明测点处管道的.保护状况. 因此, 管道较密时, 参比电应尽量靠近测点.
保定铝合金牺牲阳极的执行标准