详细说明
相关活性炭的注意事件:果壳活性炭在运输过程中,避免挤,摔,压,破坏其原有的物理结构会影响空隙的密度,从而影响吸附功能。接下来我们就一起继续探讨一下吧!
活性炭如遇雨淋湿,请晾晒后,待充分晒干后才可以继续使用。防止与火源直接接触,以防着火、活性炭再生时避免进氧并再生彻底,再生后必须用蒸汽冷却降至80℃以下,温度高,遇氧,活性炭自燃。利用活性炭与光催化剂纳米TiO2复合的方法,首先在支撑体表面上粘结活性炭形成吸附层,然后再将纳米TiO2负载在活性炭粉末颗粒上形成最外层的光催化层。可以达到以下的特点:1.合理的几何形状支撑体,使净化比表面积较大和气流阻力较小。2.TiO2处于最外层,紫外光直接作用在TiO2光催化剂上,提高利用率。3.借助活性炭的吸附作用,对空气中极低浓度的污染物进行快速吸附净化和表面富集,加快了光催化降解反应的速率,抑制了中间产物的释放,提高了污染物完全氧化的速率;TiO2的光催化作用促使被活性炭吸附的污染物向TiO2表面迁移,从而实现了活性炭的原位再生,延长使用周期。通常被称为“协同效应”。
黄彪等在超临界乙醇条件下制备TiO2光催化剂-活性炭(Sc-TiO2-AC)复合材料,并进行了针对甲醛净化性能的试验研究。通过和Sc-TiO2与活性炭的简单混合物对比,发现:若TiO2与活性炭之间仅为简单机械混合,两者是相对独立,TiO2与吸附剂之间不会产生协同效应,污染物不能在炭表面迁移,因此对于TiO2非但没有因炭吸附提供其富集的污染物高浓度环境,反而因污染物先被炭吸附而使TiO2周围环境的污染物浓度更低,造成光催化降解速度低,去除污染物效果差。又因为污染物不能从炭的表面迁移至TiO2表面由光催化反应过程脱除,因此也就不能实现活性炭原位再生的过程。而复合材料中光催化剂和活性炭可以达到“协同效应”。同时,对300、350、400℃下制备的Sc-TiO2-AC复合材料进行比较,表明在300℃下制备的Sc-TiO2-AC复合材料甲醛去除率最高。