Leide蓄电池应急系统电力胶体电池全系列Leide蓄电池应急系统电力胶体电池全系列Leide蓄电池应急系统电力胶体电池全系列Leide蓄电池应急系统电力胶体电池全系列Leide蓄电池应急系统电力胶体电池全系列Leide蓄电池应急系统电力胶体电池全系列
雷德蓄电池6-FM-120 12V120AH规格及参数
雷德蓄电池6-FM-120 12V120AH规格及参数
leide雷德蓄电池应用领域与分类:
◆免维护无须补液;< UPS不间断电源;
◆内阻小,大电流放电性能好;< 消防备用电源;◆适应温度广;< 安全防护报警系统;
◆自放电小;< 应急照明系统;◆使用寿命长;< 电力,邮电通信系统;
◆荷电出厂,使用方便;<电子仪器仪表;◆安全防爆;< 电动工具,电动玩具;
◆独特配方,深放电恢复性能好< 便携式电子设备;◆无游离电解液,侧倒仍能使用< 摄影器材;
◆产品通过CE,ROHS认证,所有电池< 太阳能、风能发电系统;符合国家标准
采用特殊密封设计和密封工艺,电解液无泄漏,控制阀采用防酸防爆装置,无酸雾析出,无爆炸可能;由于采用特殊的内部结构,即使在遇到地震、战争等意外情况下壳体破裂,电池仍能继续工作。
leide雷德蓄电池<极低的内阻安全可靠
采用美国技术高分子聚合物复合隔板,及特殊的工艺与结构,使电池内阻极小,大电流放电性能优良。
<极低的自放电率
采用美国技术高分子聚合物复合隔板,和高纯度的原材料及特殊工艺保证,特殊添加剂,从而使电池具有极低的自放电率。
<长寿命、低维护费用
由于电池采用特殊的设计,不仅重量能量比高,而且使用寿命长,25℃环境下,电池设计寿命为12V系列5-8年,2V系列8-10年。而且在正常使用整个过程中,无需加水、加酸维护。
<均衡性好
采用特殊工艺控制,严格保证电池极群重量一致,保证电池出厂开路电压、浮充电压一致。
<较宽的温度使用范围
使用温度范围为-40℃-50℃,佳使用环境温度为5℃-30℃。
<较宽的温度使用范围
(三)我国基本掌握回收技术但工艺水平有待提升
动力电池的再利用的一般过程一般是将废旧电池失效、拆解、检测、筛选,接着二次重组再利用。通常对废旧锂离子电池的回收过程是:首先彻底放电,然后对电池进行拆解分离出正极、负极、电解液和隔膜等各组成部分,再对电极材料进行碱浸出、酸浸出、除杂后进行萃取以实现有价金属的富集。回收处理方法按提取工艺可分为3大类:干法回收技术、湿法回收技术和生物回收技术。
我国已基本掌握相应的回收处理技术,但是回收工艺水平较低。一方面,国内针对动力电池的回收工艺路线还处于探索阶段,以循环制造为目标的回收技术还没有开展。另一方面,国内对动力电池回收处理普遍还停留在废物处理的阶段,资源回收再利用以及锂离子电池的循环再制造技术的研究仍未开展,对锂离子电池回收所涉及到的安全生产和环境保护等问题没有具体的工艺措施和装备保证。
(四)动力电池回收有利于环境保护和资源节约
车用动力电池报废后如不进行必要的处理,会造成环境污染和资源浪费。我国车用动力电池绝大多数为锂离子电池,锂离子电池虽然不含汞、镉、铅等毒害性较大的重金属元素,但废旧锂离子电池如果处理不当仍能够对环境造成极大的污染。比如废旧锂离子电池的电极材料进入环境中,可与环境中其它物质发生水解、分解、氧化等化学反应,产生重金属离子、强碱和负极碳粉尘,造成重金属污染、碱污染和粉尘污染;电解质进入环境中,可发生水解、分解、燃烧等化学反应,产生hf、含砷化合物和含磷化合物,造成氟污染和砷污染。
有研究5表明,回收锂离子电池可节约51.3%的自然资源,包括减少45.3%的矿石消耗和57.2%的化石能源消耗。锂离子电池材料中,包含一些有价值的材料。以一种三元材料电池为例,其中镍含量12%、钴5%、锰7%、锂1.2%,如果通过回收工艺,将有价值材料回收再利用,会起到节约资源的目的。
(五)动力电池再利用提高电池全生命周期使用价值
从新能源汽车上淘汰的动力电池,仍基本保持70%-80%的初始能量,如果直接拆解回收,是对电池剩余使用的浪费,动力电池报废后除了化学活性下降外,电池内部的化学成分并没有改变,这些电池的能量完全可以继续满足家庭储能、分布式发电、微网、移动电源、后备电源、应急电源等中小型储能设备和大型商业储能和电网储能市场的使用,如果废旧动力电池梯次利用技术提高、经济成本下降,在梯次利用领域,动力电池的全生命周期使用价值将会得到充分利用。
二、动力电池回收和再利用面临的主要问题
(一)退役电池复杂性高,拆解不便
退役动力电池复杂程度很高,包括不同类型电池制造和设计工艺的复杂性、串并联成组形式、服役和使用时间、应用车型和使用工况的多样性。比如,电池有方型、圆柱形不同类型,其叠片、绕组形式也不同,由于集成形式不同,成组后电池包也各异。这些复杂性导致电池回收再利用或者拆解时极为不便。如果进行自动化拆解,对生产线的柔性配置要求比较高,从而导致处置成本过高。因此,在目前自动化水平不高的情况下,多数工序是人工完成的,工人的技能水平可能会影响着电池回收过程中的成品率,同时手工拆解过程中,电池短路、漏液可能导致起火或者爆炸,对人身和财产有潜在安全隐患。
(二)退役电池一致性差,品质不高
退役电池的再利用必须经过品质检测,包括安全性评估、循环寿命测试等,将电芯分选分级,再重组后才可以被再利用。但是如果动力电池在服役期间没有完整的数据记录,再利用过程进行电池寿命预测时,准确度可能会下降,电池的一致性无法保障,同时测试设备、测试费用、测试时间、分析建模等成本都会增加。由于不同电池的内阻特性、电化学特性、热特性相同,电池的不一致性和可靠性可能也无法保证,如果一些存在问题的电池在筛选过程中没有被检验出来,而再次被使用,会增加其他整个电池系统的安全风险。