POWEROHS蓄电池NP65-1212V65AH应急报价POWEROHS蓄电池NP65-1212V65AH应急报价POWEROHS蓄电池NP65-1212V65AH应急报价POWEROHS蓄电池NP65-1212V65AH应急报价POWEROHS蓄电池NP65-1212V65AH应急报价POWEROHS蓄电池NP65-1212V65AH应急报价POWEROHS蓄电池NP65-1212V65AH应急报价POWEROHS蓄电池NP65-1212V65AH应急报价
密封式铅酸免维护蓄电池的安全问题 |
密封式铅酸免维护蓄电池的保养和服务需要熟悉铅酸电池知识、人身安全要求和设备安全知识的人员进行实施和监督。非专职人员必须远离电池和保养活动。电气电池系统有电击和高短路电流的危险。保养密封式铅酸免维护蓄电池的必须注意下列告诫:1、去除一切个人金属物件(手表,戒指等)。2、应用绝缘工具。3、穿戴眼镜和橡皮手套。4、注意电路极性。5、不要随意连接或断开带电电路。6、在把电池搬上金属架上之前,先用接地故障探测指示器检查,确保电池没有接地危险。没有此指示器时,可测量电池与架之间的电压是否为零。若不是,则必须在进行其他操作前查明原因并予以解决。7、避免在电池上面放置金属工具。8、在进行电池保养时,应尽可能避免接触电池系统带电的部分。9、用于密封式铅酸免维护蓄电池充电的某些充电机电路可能有隔离变压器,因此,在这种系统上对电池进行保养和收集数据时便必须特别小心。10、密封式铅酸免维护蓄电池有时装在一些不方便接触电池的电池箱中,此时,在对电池系统进行保养和收集数据时也须特别小心。处理回收用过的铅酸电池是要回收利用的。电池里装有铅和稀硫酸。处理时必须按照当地的规定。不要置于地面、湖泊或其他非特许的地方。化学密封式铅酸免维护蓄电池里溢出的任何液体都是含有稀硫酸的电解液,会皮肤和眼睛,能导电、有腐蚀性。皮肤如果接触了电解液,应立刻用水彻底冲洗。电解液如果进入眼睛须用清水彻底清洗至少10分钟或使用的中性洗眼液进行清洗,并立刻就医。任何溅出的电解液用弱碱性的溶液(例如碳酸钠的溶液)予以中和。火灾、和热铅酸电池在过充电状态时可能释放出含有氢气的性气体。电池安装区域禁止吸烟,带入火星。搬动电池之前先触碰一下一个接地的金属物体,释放掉可能在人身上存在的静电荷。不要在密封的环境中给电池充电。安装电池时,电池之间要留1.5cm以上的空间供对流冷却。如果是装在箱里的,木箱和房间必须适当通风防止性气体累积产生危险。 |
南都电源有限公司南都蓄电池6-FM-100/12V100AH列阀控式密封铅酸蓄电池采用可靠的AGM技术生产,该款电池应用了适合数据机房使用的内含板栅合金,通过降低电池的维护难度,降低电池的浮充电流,提高电池的浮充寿命,来达到降低电池能耗和降低电池组运维成本的目的,同时融合了南都电池多年的蓄电池研究、生产经验,在蓄电池系统可靠性、安全性和高效性方面得到全面的提升,南都蓄电池6-FM-100/12V100AH通过南都电源科学设计,精心选材,创新性地研制出目前***数据中心使用的后备领域储能使用的高功率电池。
南都蓄电池6-FM-100/12V100AH产品详细自有特性:
免维护:
采用独特的气体再化合技术(GAS RECOMBINATION)。不必定期补液维护,减少用户使用的后顾之忧。
安全可靠性高:
采用自动开启、关闭的安全阀(VRLA),防止外部气体被蓄电池内部,而破坏蓄电池性能,同时可防止因充电等产生的气体造成内压异常使蓄电池遭到破坏。全密闭电池在正常浮充下不会有电解液及酸雾排出,对人体无害。
使用寿命长:
在20℃环境下,南都电池小型密封电池浮充寿命可达2~3年,南都电池系列固定型密封电池浮充寿命可达3~5年,GFM系列电池浮充寿命可达10~15年。
自放电率低:
采用优质的铅钙多元合金,降低了蓄电池的自放电率,在20℃的环境温度下,KSTAR蓄电池在6个月内不必补充电能即可使用。
适应环境能力强:
可在-20℃~+50℃的环境温度下使用,适用于沙漠、高原性气候。可用于防暴区的特殊电源。
方向性强:
特别隔膜(AGM)牢固吸附电解液使之不流动。电池无论立放或卧放均不会泄露,保证了正常使用。
循环能力优异
极板采用特殊的铅膏制造和紧装配压力,延缓正极活性物质循环使用过程中活性物质的软化,提高了电池循环耐久性能。按照国际标准IEC60896-22实验条件下的每日放电浮充循环寿命达到800次以上。
.影响POWEROHS蓄电池质量的技术问题
1)电池构成
VRLA电池由正极板、负极板、AGM隔膜、正负汇流条、电解液、安全阀、盖和壳组成。其中正极板栅厚度、合金成份、AGM隔膜厚度均匀性、汇流条合金、电解液量、安全阀开闭压力、壳盖材料、电池生产工艺等对电池寿命和容量均匀性具有重要影响。
2)板栅合金
VRLA电池负板栅合金一般为Pb-Ca系列合金,正板栅合金有Pb-Ca系列、Pb-Sb(低)系列和纯Pb等,其中Pb-Ca、Pb-Sb(低)合金正板栅电池浮充寿命相近,但循环寿命相差较大,对于经常停电地区选用低锑合金电池可靠性好。
3)板栅厚度
极板的正板栅厚度决定电池的设计寿命。
4)安全阀
安全阀是电池的一个关键部件,具有滤酸、防爆和单向开放功能, YD/T7991 996规定安全开闭压力范围为1-49kPa,但是,对于长寿命电池,必须考虑单向密封,防止空气进人电池内部,同时防止内部水蒸气在较高温度下跑掉。
5)AGM隔膜
隔膜孔隙率和厚度均匀性,直接影响隔膜吸酸饱和度和装配压缩比,从而影响电池寿命和容量均匀性。
6)壳盖材料
VRLA电池壳盖材料有PP、ABS和PVC,PP材料相对较好。
7)酸量和化成工艺
分为电池化成和槽化成两种,电池化成可以定量注酸并记录每个电池单体化成全过程数据,能准确判断每个出厂电池综合生产质量状况,但化成时间较长。槽化成是对极板化成,化成时间短,极板化成较充分,但对电池组装质量不能通过化成过程数据记录判断。
8)涂板工艺
涂板工艺要保证极板厚度和每片极板活性物质的均匀性。
9)密封技术
VRLA电池密封技术包括极柱密封、壳盖材料透水性、壳盖密封和安全阀密封。
10)氧复合效率
AGM电池具有良好的氧复合效率,贫液状态下按有关标准测试氧复合效率一般大于98%,因此具有良好的免维护性能。
2.影响蓄电池寿命的环境因素
1)环境温度
蓄电池正常运行的温度是20~40℃,较佳运行温度是25℃。当温度每升高5℃,蓄电池的使用寿命降低10%,且容易发生热失控。
2)环境湿度
蓄电池的运行湿度应该在5~95%(不结露)之间,环境湿度过高,会在蓄电池表面结露,容易出现短路;环境湿度过低,容易产生静电。
3)灰尘
灰尘过多,容易使蓄电池短路,安全阀堵塞失效。
3.蓄电池失效模式
1)电池失水
阀控式铅酸蓄电池不逸出气体是有条件的,即:电池在存放期间内应无气体逸出;充电电压在2.35V/单体(25℃)以下应无气体逸出;放电期间内应无气体逸出。但当充电电压超过2.35V/单体时就有可能使气体逸出,此时电池体内短时间产生了大量气体来不及被负极吸收,压力超过某个值时,便开始通过单向排气阀排气,排出的气体虽然经过滤酸垫滤掉了酸雾,但毕竟使电池损失了气体(也就是失水),所以阀控式密封铅酸蓄电池充电不能过充电。
2)负极板硫酸化
当阀控式密封铅酸蓄电池的荷电不足时,在电池的正负极栅板上就有PbSO4这一现象称为活性物质的硫酸化,硫酸化使电池的活性物质减少,降低电池的有效容量,也影响电池的气体吸收能力,久之就会使电池失效。
3)正极板腐蚀
由于电池失水,造成电解液比重增高,过强的电解液酸性加剧正极板腐蚀。
4)热失控
热失控是指蓄电池在恒压充电时,充电电流和电池温度发生一种累积性的增强作用,并逐步损坏蓄电池。从目前蓄电池使用的状况调查来看,热失控是蓄电池失效的主要原因之一。热失控的直接后果是蓄电池的外壳鼓包、漏气,电池容量下降,严重的还会引起极板形变,较后失效。浮充电压是蓄电池长期使用的充电电压,是影响电池寿命至关重要的因素。一般情况下,浮充电压定为2.23 ~ 2.25V/单体(25℃)比较合适。
4. 蓄电池在后备电源运行中存在问题
1)蓄电池寿命无法达到设计要求
在实际中,蓄电池在三年时就会出现严重劣化,使用超过5年的蓄电池很少。原因是在使用中对蓄电池没有有效、合理地进行管理以及维护,造成蓄电池在早期出现劣化,并且没有及时发现落后电池,致使劣化积累、加剧,导致蓄电池过早报废。
2)对蓄电池的运行情况、性能状况不明
蓄电池组中如果有落后的蓄电池,可以通过一定深度的放电、充电循环,在一定程度上减少落后的差别。但由于没有良好的管理手段,对于蓄电池内部性能参数,如蓄电池的内阻、当前的剩余容量,无法十分清楚地了解,所以相应的措施就无法实施。
3)对于单体电池而言,充电机制可靠性需要完善
由于目前国内直流系统的充电机制不是非常的完善,在实际中存在电压漂移的情况,蓄电池长期处于浮冲状态,如果浮冲电压偏离正常的范围,就会造成蓄电池的过充或欠充,长期的过充或欠充对于蓄电池的性能影响非常大。
4)单体电池之间不均衡
目前蓄电池组由数量很多的单体电池组成,实际运行中存在单体电池之间充电电压、内阻等差异较大的情况,特别是在浮充下,这种不均衡现象显得非常严重。个别落后电池充电不完全,如果没有及时发现并处理,这种落后就会加剧。如此反复,这种不均衡就加重,致使落后电池失效,从而引起整组蓄电池的容量过早丧失。
5)无人值守站点的维护工作缺乏良好的管理监测手段
对于许多无人值守的站点,由于没有网络管理监测的手段,对于蓄电池的维护更加薄弱,特别是对于蓄电池的运行情况以及性能状况,不能清楚的了解。大量的维护与管理工作由人工进行,同时数据的整理与分析需要维护人员有较强的专业知识。
6)蓄电池终止寿命无法提前判断以及蓄电池的更换缺乏科学的依据
我们对于蓄电池的寿命终止,希望能够提前作出判断,为蓄电池的更换赢得时间。但目前对于蓄电池寿命的终止,没有一个可靠的手段,仅仅根据多年的经验来进行。所以在实际中,往往是蓄电池放电的容量低于较低要求后,才在放电中发现蓄电池的寿命终止。