详细说明
使其应用受到了硬件上的限制,实际应用并不多。但DSP高速数字信号处理速度越来越快,在线实时控制能力越来越强,在结合神经网络的应用方面效果显著。本文采用神经网络的预测能力对温度参数进行学习和调整,同时结合数字信号处理(DSP)模块进行控制和运算,实现高速运算处理控制,最终实现了锡炉温度控制系统在线实时补偿加热控制。
该控制系统的预测采用BP神经网络[1],其特点是只有前后相邻两层之间的神经元相互连接,输出神经元输出预测值,预测神经网络结构如图2所示。网络结构分为3层,即为输入层、隐层和输出层。输入层负责接收数据,不进行运算。其中x0激活函数的初始值,位于[-1,1]之间的随机数,而x1是网络控制系统的温度误差e,x2和x3分别为加热器的电压电流检测值。
实际应用中wij为各层连接权值,针对激活函数f(net)的控制参数net进行网络系统收敛范围的控制,从而有利于保证整个系统的稳定性。
因此,通过算法的实验,利用自适应因子(1-β)对权修改量按需进行弹性的变化,实现了网络收敛速度的学习。
2 DSP系统实现
控制系统主要采用DS1002型系统板及其多路I/O板,系统主要由数字信号处理芯片TMS320FL2407中心及相应接口外围电路组成, 包括加热器件可控驱动电路、温度采集A /D 电路、温度设定键盘输入、温度显示电路和报警电路等。实时控制系统硬件电路原理如图3所示。
(2)加热器件可控驱动电路。控制加热器的执行机构可以采用传统的继电器类和可控硅类型,但其控制简单、性能差。本加热温度控制系统采用PID方式,模拟量自动调节电压相角,可以进行温度的连续控制,解决温度控制的精度和稳定度要求,实现控制温度精度达到±2 ℃。根据温度传感器提供感应回馈的采样数据,DSP输出的PWM控制信号,控制加热器的执行元件,达到在线实时控制锡炉温度的目的;
(3)温度、电压和电流采集A/D电路。系统在初始化工作时,不断地通过传感器采集当前的锡炉实时温度。系统板通过I/O板将温度传感器采集的模拟数据和温度误差完成A/D转换后,由高速通路送入DSP控制中心,同时结合电压电流数据,将采集数据与比较寄存器内的设定值进行比较运算,经DSP高速运算处理后进行D/A转换,进入控制执行机构;
(4)温度设定键盘输入。系统的温度控制参数的输入由8个输入轻触按键通过串口与DSP系统板之间的通信实现;