管道探伤射线检测的适用性和局限性:
1、对检测体积型的缺陷比较,比较容易对缺陷进行定性。
2、射线底片易于保留,有追溯性。
3、直观显示缺陷的形状和类型。
4、缺点不能定位缺陷的埋藏深度,同时检测厚度有限,底片需专门送洗,并且对人有一定害,成本较高。
总而言之,超声波、X射线探伤适用于探伤内部缺陷;其中超声波适用于5mm以上,且形状规则的部件,X射线不能定位缺陷的埋藏深度,有辐射。 磁粉、渗透探伤适用于探伤部件表面缺陷;其中磁粉探伤于检测磁性材料,渗透探伤于检测表面开口缺陷。
京山焊接超声探伤公司
钢结构是我国户外钢结构安全检测的主要形式之一
随着我国钢结构检测的经济发展,城市建设与规划的不断完善,户外钢结构检测作为城市里的一道风景线也越来越多人的关注。户外设施作为载体的一种,以其独特的设置
位置,对企业的产品、社会形象、文化内涵宣传等方面起到了积极作用。由于户外设施结构和位置的特殊性,对其本身的提出了较高的要求,也存在着由于户外设施在恶劣
下损坏、倒塌,造成周边人员的伤害与财产损失的事件时有发生。 建筑工程钢结构检测所包含的种类:墙体、落地式钢结构、楼顶钢结构。
钢结构检测的执行:户外钢结构技术规范建筑工程钢结构检测的内容:
1、钢结构检测底座的水平、强度等指标。
2、钢结构检测整体结构装配和焊接。
3、钢结构检测的避雷、绝缘、防腐性能指标。
4、钢结构检测的设计、审批、安装、原材料等文件性资料的审核。
5、钢结构检测装备完毕后对周围的影响。
钢结构安全检测内容如下:
1. 调查钢结构的结构特点、结构布置与构造情况等。
2. 检测钢结构的结构、外观和设备的完损程度,分析损坏原因。
3. 检测钢结构的杆件与钢柱的变形情况。
4. 根据委托方提供的图纸对钢结构构件的截面尺寸进行复核。
5. 检测钢结构杆件连接节点焊缝和钢结构锚栓连接情况。
6. 根据钢结构结构的材料力学性能,按现有荷载使用情况及结构体系,建立合理的计算模型,验算钢结构的承载力。
7. 根据相关规范结合现场的检测数据及计算分析结果,对钢结构进行安全性评估,并根据检测结果提出合理建议。
钢结构安全检测鉴定项目实例展示分析:
钢结构三面长度为等边三角形,均为18 m,钢结构面板底部标高为+16.000 m,顶部标高为+22.000 m,钢结构钢柱+6.000 m以下采用1400×14焊管,+6.000 m以上采用1400×12焊管,上部主体桁架杆件主要采用150×100×5矩形管、100×5方管、100×7方管、70×4方管四种形式,柱脚采用42?45锚栓环形布置,见工程照片1,钢结构所用的钢管柱、桁架等主要构件钢材均采用Q235B钢制作。
本钢结构设计合理使用年限为20年,地震设防烈度按6度设防,结构安全等级为二级。
1、钢结构计算与分析
根据委托方提供的设计图纸与现场实际检测情况结合,采用同济大学3D3S对钢结构进行空间建模计算,计算结果表明钢结构与钢柱连接上排桁架方管杆件及斜撑强度应力验算与整体应力验算不要求,其余杆件强度基本要求。
2、检测结论与建议
通过该钢结构的现场检测结果以及计算分析结果,对钢结构的目前现状得出以下结论与建议:
(1) 钢结构钢柱壁厚几何尺寸不符合设计要求,但算该尺寸使用要求。
(2) 钢结构杆件油漆剥落,锈蚀较重,应采取除锈措施并重新粉刷防锈漆。
(3) 对柱脚锚栓缺少螺母及螺母与锚杆未拧紧部位,应补齐缺少的螺母并与使其与锚杆固连接可靠。
(4) 钢结构焊缝较差,多处地方存在少焊、漏焊、焊缝不饱满等现象。建议对钢结构焊缝进行普查,对存在问题部位应采取补焊或重焊等相应措施。
(5) 算,钢结构部分桁架方管杆件强度应力验算与整体应力验算不要求。建议采取加固措施,如采用加焊双角钢或钢套管等。
(6) 定期对钢结构进行检测与。
京山焊接超声探伤
钢结构构件(含节点、连接)承载能力验算分级的制定原则,已集中阐述于本第5.1.1条。可详细阅读该条的条文说明,本条不再重复。这里需要指出的是,对已有钢结构建筑的承载能力验算,在确定其抗力时,除应考虑材料性能和结构构件的实际情况外,尚应充分考虑缺陷、损伤、腐蚀、施工偏差和过大变形等因素的影响。因为钢结构对这些因素的作用很,而原设计所针对的待建结构,是不考虑这些因素的。表中R和S分别为结构构件的抗力和作用效应,应按本第5.1.2条的规定确定;γ0为结构重要性系数,按《建筑结构可靠度设计统一》GB 50068和《钢结构设计规范》GB 50017或现行相关规范的规定选择安全等级,并确定本系数的取值。本条为强制性条文,必须严格执行。
钢结构构件由于挠度过大而发生安全问题,在民用建筑中较为少见,因此,存在着是否有必要在本中设置这一检查项目的不同看法。经征询专家意见,大多数认为仍有此必要,其主要理由是:
1 国外有过旧钢梁、钢檩出现较明显塑性变形的工程实例报道;
2 设计、施工不当的钢桁架可能在遇到下列情况时出现不适于继续承载的挠度:
1)主要节点的连接失效;
2)构件的附加应力增大;
3)各种原因引起的超载。
3 偏差严重的钢梁可能由于构件弯曲、侧弯、节点板弯折或翼缘板压弯等产生的附加作用而影响其正常承载。
尽管上述构件,可能不是直接由挠度所引起,但不少的工程实例表明,确是因为首先观察到挠度的异常发展,并采取了支顶等应急措施,才避免了倒塌事故的发生。因此,通过对过大挠度的检查,以评估该结构构件是否适于继续承载,还是很有实用价值的。
当钢结构构件处于第1条所列举的几种情况时,其锈蚀速度将比正常情况下高出5倍~17倍,而它所造成的损害,也会很快地超出耐久性试验所考虑的水平和范围。此时,由于已涉及安全问题,显然应视为“不适于承载的锈蚀”进行检查和评定。若检查结果表明,该构件的锈蚀已达一定深度,则其所造成的问题将不仅仅是单纯的截面削弱,而且还会引起钢材更深处的晶间断裂或穿透,这相当于了应力集中的作用,显然要比单纯的截面更为严重。因此,当以截面削弱为标志来划分影响承载的锈蚀界限时,有必要考虑这种微观结构的影响。本表5规定的限值,已作了这方面考虑,故较为稳妥可行。
另外应指出的是,由于实际锈蚀的不均匀性,受锈蚀构件可能产生受力偏心,而显著影响其承载力。要求验算时,应考虑锈蚀产生的受力偏心效应。