涪陵高性价比铝合金拉弯报价
拉弯工艺的基本原理与技术特点
拉弯是一种结合拉伸与弯曲的金属成型工艺,通过施加轴向拉力和弯矩使材料发生塑性变形。该工艺能有效消除回弹,精度可达±0.5mm/m,特别适合制造飞机桁架、高铁窗框等高精度构件。关键参数包括拉伸力(通常为材料屈服强度的30-80%)、弯曲半径(最小为2倍壁厚)和变形速度(铝材推荐0.5-2mm/s)。与纯弯曲相比,拉弯可使回弹角减少70%以上,且能避免截面畸变。现代数控拉弯机配备力位混合控制系统,可实时调节拉伸力与进给速度的匹配关系,实现复杂三维曲线的成型。
铝型材弯曲在上述情况不允许条件下,则应考虑选择铝型材的其他硬度状态,如To~T4;一般情况下铝型材(6063)在To状态下其伸长率可以达到20 % ~28 %;4、总之,关于铝型材拉弯在伸长率方面的要求应该视具体的设计要求和选材情况(几何形状、壁厚、空腔封闭程度、弯曲方向受力对称性、抗拉强度等)具体确定。
拉弯是一种的冷弯工艺.其主要特点如下:可以弯曲各种型材截面几乎截面的铝,钢,不锈钢,铜等金属型材,管材都可以做成弯管。弯曲质量好经过喷涂,电泳,电镀可一次成形。在相对弯曲半径允许的情况下,弯管内壁不会起皱,截面不会畸变。拉弯可消除弯管材料内部的残余应力,产品尺寸稳定性好。由于金属材料的冷作硬化,材料经拉弯后,可材料的综合机械性能。可以弯曲多种曲线形状除能弯常规标准圆弧外,还可以弯U形弯管,S形弯管,W形,椭圆形,抛物线形,圆弧带直线段形,锥面曲线,一条曲线上有多种半径等一系列复杂曲线形状的非标弯管。弯曲能力强。弯管加工的方法很多。按弯曲成形方式可以分为滚弯,压弯,推弯和绕弯;按弯曲时是否使用模具可以分为有模弯和无模弯;按弯曲时有无芯棒可以分为有芯弯和无芯弯;按弯曲时是否加热可以分为冷弯和热弯。近年来还出现了零半径弯曲,中频感应弯曲,热应力弯曲和激光成形弯曲等新的弯管工艺。
[0003] 因此,有必要对现有的工艺方法进行改进,提出一种新的生产工艺,可提高材料的 拉弯性能,使其既能材料的结构强度,又能提高型材成形表面的质量,从根本上解决铝 合金型材拉弯加工后表面缺陷问题。[0004] 有鉴于此,本发明的目的是提供一种6061铝合金拉弯型材的生产工艺,可避免现 有技术铝合金拉弯型材在拉弯成型工艺中存在的表面质量差、报废率高的问题。 [0005] 本发明的目的是通过以下方案实现:
涪陵高性价比铝合金拉弯报价
传统的型材拉弯无法一次成形三维零部件,满足当前工业对于制件复杂且美观的要求。三维多点柔性拉弯成形是一种新型的柔性拉弯成形技术,它可以实现模具型面的重构并适用于不同类型截面型材的加工制造。铝合型材的三维多点柔性拉弯是一个复杂的力学过程,其制件质量得到控制,而且易出现如截面畸变、起皱、断裂等缺陷。为了提高制件质量,需要对成形过程中的工艺参数进行合理的控制和优化。通过对三维多点柔性拉弯成形进行系统的研究,提出了截面畸变的预测方法和优化方案。本文的主要研究内容及结论如下:1.以有限元模拟为主要研究方法,建立三维多点柔性拉弯成形的有限元模型,研究内容主要包括介绍有限元的基本理论、材料的本构方程、单元类型的选择、模型的合理简化、网格的划分、接触和摩擦以及边界条件的设定,为下文研究铝合金型材三维多点柔性拉弯成形工艺中的有限元模拟部分提供了理论依据。2.采用控制变量法,研究工艺参数对制件截面畸变的影响规律:(1)截面畸变量随多点模具头体数量的增加而逐渐减小。多点模具头体数量由6增大到12时,塌陷率由0.1231降至0.0840,凸胀率由0.0193降至0.0112,截面畸变总体变小。(2)截面畸变量随预拉量的增加而逐渐增大。预拉量由0.8%L增大到1.4%L,塌陷率由0.0935增至0.0981,凸胀率由0.0153增至0.0208,截面畸变总体变大。(3)截面畸变量随补拉量的增加而逐渐增大。补拉量由0.8%L增大到1.4%L,塌陷率由0.0943增至0.0969,凸胀率由0.0164增至0.0170,截面畸变总体变大。(4)截面畸变量随摩擦系数的增加而逐渐增大。摩擦系数由0.05增至0.20时,塌陷率由0.0908增至0.0969,凸胀率由0.0141增至0.0218,截面畸变总体变大。(5)对于型材的截面畸变而言,型材的塌陷是主要的变形方式。3.三维多点柔性拉弯成形制件质量的工艺参数研究。(1)基于预拉量、补拉量、多点模具头体数量和摩擦系数设计四因素四水平的正交试验,运用ABAQUS软件对正交试验表中所列的各个参数组合进行数值模拟,并利用差法对数据进行分析。结果表明:多点模具头体数量对塌陷的影响程度大,补拉量对塌陷的影响程度小;摩擦系数对凸胀的影响程度大,补拉量对凸胀的影响程度小。参数组合是:预拉量为1.0%L,补拉量为0.8%L,多点模具头体数量为12个,摩擦系数为0.15。(2)对获得的参数组合进行多点成形实验验。明有限元模拟可以有效预测三维多点拉弯成形过程下制件的质量,这样可以减少实验次数、节约实验成本、缩短实验时间。
力确定。对双轴对称截面一般将弯矩绕强轴作用,而单轴对称截面则将弯矩作用在对称轴平面内,使压力作用在分布材料较多的一侧。(单向压弯构件)压弯构件可能在弯矩作用平面内弯曲失稳,也可能在弯矩作用平面外弯扭失稳。所以,压弯构件应分别计算弯矩作用平面内和弯矩作用平面外的稳定。,5.3.1弯矩作用平面内的稳定计算 目前确定压弯构件弯矩作用平面内限承载力的方法很多,可分为两大类。一类是边缘屈服准则的计算方法,一类是精度较高的数值计算方法。边缘屈服准则 等效弯矩系数和弯矩放大系数 图5-4为一两端铰接压弯构件,横向荷载产生的跨中挠度为vm。当荷载为对称作用时,可假定挠曲线为正弦曲线。当轴心力作用后,在弹性范