您的位置:商铺首页 >> 行业资讯 >> 详情

马鞍山金刚石回收的用途

时间:2024-01-20 18:11

  马鞍山金刚石回收的用途

  钨钢,又称为硬质合金,是指至少含有一种金属碳化物组成的烧结复合材料。

  碳化钨,碳化钴,碳化铌、碳化钛,碳化钽是钨钢的常见组分。碳化物组份(或相)的晶粒尺寸通常在0.2-10微米之间,碳化物晶粒使用金属粘结剂结合在一起。粘结剂通常是指金属钴(Co),但对一些特别的用途,镍(Ni),铁(Fe),或其它金属及合金也可使用。对于一个待定的碳化物和粘结相的成分组合称之为“牌号”。

  钨钢的分类根据ISO标准进行。这种分类的依据是工件的材料种别(如P,M,K,N,S,H牌号)。粘结相成分主要是利用其强度和耐蚀性。

  钨钢的基体由两部分组成:一部分是硬化相;另一部分是粘结金属。粘结金属一般是铁族金属,常用的是钴、镍。因此就有了钨钴合金、钨镍合金及钨钛钴合金。

  含钨的钢材,比如高速钢和某些热作模具钢,钢材中含钨对钢材硬度和耐热性能有很显著的提高,但是韧性会急剧下降。钨资源的主要应用也是硬质合金,也就是钨钢。硬质合金,被称为现代工业的牙齿,钨钢制品的使用程度非常广泛。

  马鞍山金刚石回收的用途

  模具和量具 中钴普通硬质合金用于制作拉伸模、拉拔模等;高钴硬质合金可用于制作冲击负荷较大的挤压模、冷镦模、冲压模等。高硬度的结构件,如喷嘴、轴承;在尖端技术方面,火箭头,人造卫星返回大气层防燃烧的遮板等。性能:自然界硬度高,高弹性模量,导热率高,好的缘性,电子和空穴的迁移率高,掺入硼可制造半导体;热敏、透红外光等物质性质及良好的耐蚀性。 应用:刀具、工具、结构、功能材料性能:很高的硬度、抗压强度、热稳定性、化学惰性和好的导热性。

  冷速;转变成玻璃态的温度Tg和结晶温度Tm的间隔,间隔越小,越容易转变为非晶态 判据:若为长程有序则为晶体,短程有序则为非晶体。三大类材料的结晶倾向如何?原因何在?金属晶体:面心立方、体心立方、密排六方 这是因为金属键具有无方向性的性质,且每个阵点只有一个原子的缘故陶瓷材料一般是离子晶体,也有的是共价晶体 适应键型、离子尺寸差别和原子价引起的种种限制   晶体的周期性结构如何进行几何描述?晶体结构与空间点阵的相互关系如何? 在探讨晶体结构时,可以把结构设想为在方向上延伸到无穷远处。原子在空间中分布规律性的基本定义就是空间点阵的基本定义。以几何点代替具体的粒子就是空间点的阵列,如果每一个阵点都具有相同的环境,阵点在三维空间的分布就形成了一个空间点阵 空间点阵是晶体结构的几何抽象 5.三大类材料原子空间排列的主要倾向如何?并简要分析其原因。 6.掌握三种简单晶体结构的特征(晶胞原子数、致密度、配位数、密排面与密排方向等)。  面心立方 体心立方 密排六方 晶胞原子数 4 2 4 致密度 0.74 0.68 0.74 配位数 12 8 12 密排面 {111} 无 (0001)(0002) 密排方向   或  7.陶瓷材料的结构特性是什么?是如何构造起来的?了解陶瓷材料比较简单的几种晶体结构。

  指出晶体材料的基本强化途径。冷变形强化、固溶强化、细晶强化、第二相强化、复合强化比较固溶强化与第二相强化的机理有什么不同。固溶强化:合金元素溶于金属基体中形成固溶体而使金属强度、硬度升高的现象,称为固溶强化。机理:一是溶质原子的溶入使固溶体的晶格发生畸变,从而产生附加的应力场,阻碍位错的运动;二是溶质原子常常被吸附在位错线的附近,降低了位错的能量状态。 第二相强化:材料通过基体中分布有细小弥散的第二相质点而产生强化的方法,称为第二相强化或分散强化。

  马鞍山金刚石回收的用途