详细说明
激光技术在工业上的应用
由于具有适应性强、加工质量好、精度高、效率高、效益好、加工方法多、无污染等优点,激光技术被广泛用于工业领域。
激光快速成形:用激光制造模型时用的材料是液态光敏树脂,它在吸收了紫外波段的激光能量后便发生凝固,变化成固体材料。把要制造的模型编成程序,输入到计算机。激光器输出来的激光束由计算机控制光路系统,使它在模型材料上扫描刻划,在激光束所到之处,原先是液态的材料凝固起来。激光束在计算机的指挥下作完扫描刻划,将光敏聚合材料逐层固化,精确堆积成样件,造出模型。所以,用这个办法制造模型,速度快,造出来的模型又精致。该技术已在航空航天、电子、汽车等工业领域得到广泛应用。
激光切割:激光切割技术广泛应用于金属和非金属材料的加工中,可大大减少加工时间,降低加工成本,提高工件质量。脉冲激光适用于金属材料,连续激光适用于非金属材料,后者是激光切割技术的重要应用领域。但激光在工业领域中的应用是有局限和缺点的,比如用激光来切割食物和胶合板就不成功,食物被切开的同时也被灼烧了,而切割胶合板在经济上还远不合化算。
激光焊接:激光束照射在材料上,会把它加热至融熔,使对接在一起的组件接合在一起,即是焊接。激光焊接,用比切割金属时功率较小的激光束,使材料熔化而不使其气化,在冷却后成为一块连续的固体结构。激光焊接技术具有溶池净化效应,能纯净焊缝金属,适用于相同和不同金属材料间的焊接。由于激光能量密度高,对高熔点、高反射率、高导热率和物理特性相差很大的金属焊接特别有利。因为用激光焊接是不需要任何焊料的,所以排除了焊接组件受污染的可能;其次,激光束可被光学系统聚成直径很细的光束,换言之,激光可以作成非常精细的焊枪,做精密焊接工作;还有激光焊接与组件不会直接接触,亦即这是非接触式的焊接,因而材料质地脆弱也不打紧,还可以对远离我们身边的组件作焊接,也可以把放置在真空室内的组件焊接起来。因为激光焊接有这些特点,所以它在微电子工业中尤其受欢迎。
激光雕刻:用激光雕刻刀作雕刻,比用普通雕刻刀更方便,更迅速。用普通雕刻刀在坚硬的材料上,比如在花冈岩、钢板上作雕刻,或者是在一些比较柔软的材料,比如皮革上作雕刻,就比较吃力,刻一幅图案要花比较长的时间。如果使用激光雕刻则不同,因为它是利用高能量密度的激光对工件进行局部照射,使表层材料气化或发生颜色变化的化学反应,从而留下永久性标记的一种雕刻方法。它根本就没有和材料接触,材料硬或者柔软,并不妨碍雕刻的速度。所以激光雕刻技术是激光加工最大的应用领域之一。用这种雕刻刀作雕刻不管在坚硬的材料,或者是在柔软的材料上雕刻,刻划的速度一样。倘若与计算机相配合,控制激光束移动,雕刻工作还可以自动化。把要雕刻的图案放在光电扫描仪上,扫描仪输出的讯号经过计算机处理后,用来控制激光束的动作,就可以自动地在木板上,玻璃上,皮革上按照我们的图样雕刻出来。同时,聚焦起来的激光束很细,相当于非常灵巧的雕刻刀,雕刻的线条细,图案上的细节也能够给雕刻出来。激光雕刻可以打出各种文字、符号和图案等,字符大小可以从毫米到微米量级,这对产品的防伪有特殊的意义。激光雕刻是近年巳发展至可实现亚微米雕刻,已广泛用于微电子工业和生物工程。
激光打孔:在组件上开个小孔是件很常见的事。但是,如果要求在坚硬的材料上,例如在硬质合金上打大量0.1毫米到几微米直径的小孔。用普通的机械加工工具恐怕是不容易办到,即使能够做到,加工成本也会很高。激光有很好的同调性,用光学系统可以把它聚焦成直径很微少的光点(小于一微米),这相当于用来钻孔的微型钻头。其次,激光的亮度很高,在聚焦的焦点上的激光能量密度(平均每平方米面积上的能量)会很高,普通一台激光器输出的激光,产生的能量就可以高达109焦耳/厘米2,足以让材料熔化并气化,在材料上留下一个小孔,就像是钻头钻出来的。但是,激光钻出的孔是圆锥形的,而不是机械钻孔的圆柱形,这在有些地方是很不方便的。 激光蚀刻:激光蚀刻技术比传统的化学蚀刻技术工艺简单,可大幅度降低生产成本,可加工0.125~1微米宽的线,非常适合于超大规模集成电路的制造。