详细说明
SC-HA-HF4的写入:在51单片机中,写入的数值可以是十进制和十六进制,但不能是二进制。比如:P1=4;P1=0X04;当写语句"P1=4;"时P1^0——P1^7的电平依次为“00100000”当写语句"P1=65;"时P1^0——P1^7的电平依次为"10000010";65的十六进制码为:0x41从以上两个数值可以发现,端口的低位对应的是数值的低位,端口的高位对应的是数值的高位。在用数码管显示数字的时候,是一个位数字,一位数字的写入,比如说26,先写2,再写6.以用数码管写2为例:将数码管的断选abcdefgdp分别接到P1^0,P1^1……P1^7;若要显示2,则要求abcdefgdp依次为:11011010如果按照端口的对应,写P1=0xda,那就错了。
热电偶补偿导线
补偿导线是在一定温度范围内(包括常温)具有与所匹配的热电偶的热电动势值相同的导线,用它们连接热电偶与测量装置,以补偿它们与热电偶连接处的温度变化所产生的误差,补偿导线分为延长型和补偿型两种。
一、生产执行标准
GB/T4989-94
使用条件
1、工作温度:
耐热用:200℃和260℃两种。
一般用:70℃和105℃两种。
2、环境温度:
氟塑料绝缘和护套线缆:固定敷设-60℃,非固定敷设-20℃。
聚氯绝缘和护套线缆:固定敷设-40℃,非固定敷设-15℃。
3、允许弯曲半径:
a)有铜带的补偿电缆,应不小于电缆外径的16倍;
b)其它结构的补偿电缆,应不小于电缆外径的10倍。
三、型号、名称
一)补偿导线
型号
|
名称
|
KX-GS-VV
|
聚氯绝缘和护套一般用精密级K分度热电偶用补偿导线
|
KX-GS-VPV
|
聚氯绝缘和护套铜丝编织一般用精密级K分度热电偶用补偿导线
|
KX-HS-FF
|
氟塑料绝缘和护套耐热用精密级K分度热电偶用高温补偿导线
|
KX-HS-FP1F
|
氟塑料绝缘和护套镀锡铜丝编织耐热用精密级K分度热电偶用高温补偿导线
|
KX-HS-FB
|
聚四氟绝缘、玻璃丝编织护套耐热用精密级K分度热电偶用高温补偿导线
|
KX-HS-FBP1
|
聚四氟带绕包绝缘玻璃丝编织,镀锡铜丝编织,玻璃丝编织外护套耐热用精密级K分度热电偶用高温补偿导线
|
KX-HS-FP1V105
|
氟塑料绝缘镀锡铜丝编织耐热105℃聚氯护套耐热用精密级K分度热电偶用高温补偿导线
|
SC-HA-HF4所以,外接晶振频率的度直接影响电子钟计时的准确性。单片机电子时钟利用内部定时,计数器溢出产生中断(12MHz晶振一般为50ms)再乘以相应的倍率,来实现秒、分、时的转换。大家都知道,从定时,计数器产生中断请求到响应中断,需要3_8个机器周期。定时中断子程序中的数据人栈和重装定时,计数器的初值还需要占用数个机器周期。此外。从中断人口转到中断子程序也要占用一定的机器周期。:从上述程序可以看出,从中断人口到定时/计数器初值的低8位装入需要占用2+2+2=6个机器周期。
注:
1、其它型号补偿导线如:KC、JX、SC、EX、NC、TX等,只需改写型号的项,如:EX-G-VV、TX-H-FVP等;
2、需导体为多股软芯时,应在原型号后加“R”表示,如:TX-G-VVPR;
3、还可根据需要提供聚(Y)绝缘、交联聚(YJ)绝缘补偿电缆;
4、补偿电缆层也可采用金属带绕包形式,如:复合铝带(P3)、复合铜带(P2);
5、需阻燃型补偿电缆,应在原型号前加“ZR-”;
6、需铠装型补偿电缆,应在原型号后加“-22”表示钢带铠装;加“-32”表示钢丝铠装;
7、需本安型补偿电缆,应在原型号前加“ia-”表示。
四、规格范围
名称
|
线芯对数
|
标称截面mm2
|
线芯结构
|
A
|
R
|
补偿导线
|
1
|
0.5
1.0
1.5
2.5
|
1/0.80
|
7/0.30
|
1/1.13
|
7/0.43
|
1/1.37
|
7/0.52
|
1/1.76
|
19/0.41
|
五、其它参数指标
项目
|
单位
|
参数指标
|
PVC绝缘
|
PE、XLPE、F46&F绝缘
|
绝缘电阻
|
MΩ.km
|
25
|
100
|
电压试验
|
V/1min
|
500
|
阻燃性能
|
符合GB/T18380-2001阻燃标准规定。
|
订货须知:
1、订货时务必注明产品型号、规格、导体种类、数量等;
2、根据双方协议允许任何长度交货;长度计量误差不超过±0.5%。
SC-HA-HF4如在对回路线的异常检查方面,就要做好记录,将问题能得到详细妥善的解决,保障继电保护工作的顺利实施。第二,加强继电设备运行状态统计工作的科学落实。状态检修工作的实施中,就要有描述设备状态的准确数据,设备的损坏是逐步发展的,所以有着相应的规律,而掌握了这些规律对继电保护的状态检修工作开展就提供了理论依据,对实际问题的解决效率也能有效提高。这就需要加强对相关设备运转时间以及启停次数和环境条件等相关状态数据信息的掌握,从而来更好的指导实际检修工作的实施,这对系统以及设备的安全性保障就有着重要作用。