黄州区高品质室外皮线光纤光缆哪个牌子好

名称:黄州区高品质室外皮线光纤光缆哪个牌子好

供应商:湖北圆志光电科技有限公司

价格:面议

最小起订量:1/米

地址:湖北省孝感市汉川市马口工业园新北路61-4号

手机:13385292666

联系人:吴志刚 (请说在中科商务网上看到)

产品编号:223493797

更新时间:2025-12-25

发布者IP:117.152.191.235

详细说明
产品参数
加工定制:是
型号:多样型号可供选择
品牌:圆志光电科技
类型:优级
是否进口:否
颜色:多样
售后服务:诚信经营,顾客至上
供货方式:可协商
公司行业:通信线缆
产品优势
产品特点: 从事通信光缆,电缆、光电配件、塑料等产品专业生产加工的私营股份有限公司,公司总部设在湖北汉川,湖北圆志光电科技有限公司拥有完整、科学的质量管理体系,自成立一来,本着诚信经营,顾客至上的服务理念,得到了多家通信运营商的信任与支持,并与多家大型企业有长期稳定合作,在行业中具有良好的信誉与口碑。
服务特点: 公司秉承:质量为先、信誉为重、创新为本、服务为诚的企业宗旨。诚意与各界新老朋友:携手精诚合作,共创美好未来。欢迎各界朋友莅临公司参观、指导和业务洽谈。

  黄州区高品质室外皮线光纤光缆哪个牌子好

  光纤光缆的基本结构与传输原理

  光纤光缆由纤芯、包层和涂覆层组成,纤芯直径通常为9μm(单模)或50/62.5μm(多模)。光信号通过全反射原理在纤芯中传输,其折射率比包层高0.3%-1%。现代单模光纤在1550nm波长的衰减低至0.18dB/km,理论带宽可达100THz。G.652.D标准光纤的色散系数控制在17ps/(nm·km)以内,支持400Gbps及以上高速传输。外护套材料根据环境选用PVC、LSZH或铠装结构,抗拉强度普遍超过1000N。

  光电混合缆线的优点1. 减少布线成本:光电混合缆线将光纤和电缆功能集成到一根缆线中,可以减少布线工程的复杂性和成本。

  2. 抗电磁干扰:光纤传输部分不受电磁干扰,了数输的稳定性和性。

  3. 节省空间:使用一根光电混合缆线可以替代单独铺设光纤和电缆的需求,节省了空间,适用于狭小或复杂的布线环境。

  4. 适用于远距离传输:光纤可以实现长距离的数输,而电力传输部分则能够为远程设备供电,适合在风电、太阳能发电等需要远距离控制和监控的场合。

  以上显示和描述了本发明的基本原理和主要特征和本发明的优点,对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的变化囊括在本发明内。不应将权利要求中的附图标记视为限制所涉及的权利要求。

  电缆装盘时端头应密封,伸出盘外的电缆端头应加保护罩(帽),运输时应注意电缆线盘侧留有一定间隙,以防卡坏电缆封头。(6)在车辆、船舶等运输工具上,电缆线盘应纵横交错地排放,电缆线盘放稳,两侧用钢丝绳牢固地固定在运输车辆上,并在电缆线盘底部用三角楔塞好,运输时电缆线盘晃动、互撞或翻倒。

  (7)大型电缆线盘运输时,应注意选择公路运输设备,若采用载重汽车运输,则应注意汽车高度符合交通道路上桥梁、涵洞等的高度限制,若超过限制,可采用拖车,以降低运输高度。

  工控,指的是工业控制自动化,主要利用电气、机械、软件组合的方式实现, 即是工业控制系统,或者是工厂自动化控制。工控指的是工业控制系统的数据、网络和系统。

  随着工业信息化的迅猛发展,德国的“工业4.0”、美国的“再工业化”风潮、“中国制造2025”等国家战略的推出,以及云计算、大数据、人工智能、物联网等新一代信息技术与制造技术的加速融合,工业控制系统由从原始的封闭独立走向开放、由单机走向互联、由自动化走向智能化。但在工业企业获得巨大发展动能的环境背景下,也滋生了大量隐患,工控正面临严峻的挑战 。

  工控系统现状

  1. 工控设备(如PLC、DCS等)以及工控协议本身普遍在设计之初就较少考虑信息方面的问题 。 工控设备主要关注的是功能,系统的稳定性及性方面;互联网通常都通过加密、身份认等方式来协议传输的性,如SSH、HTTPS协议。而工控协议基本都是采用明文方式传输,并且缺少身份认的支持 。

  2. 工控系统在建设之初较少考虑信息问题 ,比如在进行内外网交互的时候,大多只采用了物理隔离的方式进行建设,存在很大的隐患。

  3. 随着互联网的发展,“两化融合”、“互联网+”、“工业4.0”等概念的推进,工控系统与互联网的信息交互变得十分必要且频繁,这就把系统中隐藏的风险、漏洞暴露出来,同时也会引入新的风险 。

  4. 其他问题: 工业控制产品漏洞屡见不鲜 、 缺乏有效的全生命周期管理 、操作人员信息意识低等问题。

  生产场景中常见的问题

  1. 操作站、工程师站等HMI人机界面通常采用windows系统,并且基本不进行补丁更新。

  2. DCS与工程师站、操作站之间进行通信时,基本不进行身份验、规则校验、加密传输、完整性检查等。

  3. 外部运维操作没有审计监管。

  4. 工程师站权限大,有些是通用的工程师站,只要接入生产网络,就可以对控制系统进行运维。

  5. 工控系统普遍存在弱口令问题。

  6. 通信协议的性考虑不足,容易被攻击者利用。的工控通信协议或规约在设计之初一般只考虑通信的实时性和可用性,很少或根本没有考虑性问题,例如缺乏强度的认、加密或授权措施等 。

  7. 策略和管理制度不完善,人员意识不足。目前大多数行业尚未形成完整合理的信息保障制度和流程,对工控系统规划、设计、建设、运维、评估等阶段的信息需求考虑不充分。

  工控与传统的区别

  1、工控的性

  1. 网络通信协议不同,工控大多使用各个厂商的私有协议,比如ModBus协议、西门子的S7协议等。

  2. 系统稳定性要求高:网络造成的误报在一定程度上都等同于攻击。

  3. 系统运行环境不同:工控系统运行环境相对原始和落后,大多使用老版本的WinXP、WIn7等系统,并且一般不打补丁。

  4. 网络结构和行为相对稳定:不能频繁变动调整。

  5. 网络防护要求高:不能通过简单的打补丁来解决问题。

  2、工控的防护目标不同

  对于工控系统来说,防护目标与传统的防护目标同样存在较大差异,具体情况如下:

  3、防护手段不同

  4、网络架构区别

  5、数输区别

  6、运行环境不同

  相关防护标准

  西门子

  罗克韦尔

  博世、倍福、三菱、欧姆龙、施耐德

  其他

  CCS

  计算机集中控制系统。

  控制系统的结构从初的CCS(计算机集中控制系统),到第二代的DCS(分散控制系统),发展到现在流行的FCS(现场总线控制系统)。

  DCS

  分散控制系统/分布式控制系统。

  DCS是分布式控制系统的英文缩写(Distributed Control System),在国内自控行业又称之为集散控制系统。是相对于集中式控制系统而言的一种新型计算机控制系统,它是在集中式控制系统CCS的基础上发展、演变而来的。

  DCS它是一个由过程控制级和过程监控级组成的以通信网络为纽带的多级计算机系统,综合了计算机,通信、显示和控制等4C技术,其基本思想是分散控制、集中操作、分级管理、配置灵活以及组态方便。

  FCS

  现场总线控制系统。

  现场总线(Field bus)是近年来迅速发展起来的一种工业数据总线,它主要解决工业现场的智能化仪器仪表、控制器、执行机构等现场设备间的数字通信以及这些现场控制设备和高级控制系统之间的信息传递问题。由于现场总线简单、、经济实用等一系列突出的优点,因而受到了许多标准团体和计算机厂商的高度重视。

  它是一种工业数据总线,是自动化领域中底层数据通信网络。

  简单说,现场总线就是以数字通信替代了传统4-20mA模拟信号及普通开关量信号的传输,是连接智能现场设备和自动化系统的全数字、双向、多站的通信系统。

  工业领域具有自身的性,因此造就了众多的总线,工业以太网,接口,协议,标准。

  就现场总线而言,目前世界上依然存在着大概40余种,大家比较熟悉的有西门子的ProfiBus、

  PhenixContact公司的InterBus,罗克韦尔的DeviceNet与ControlNet等等。

  由于行业特性的不同,在不同的行业,也存在着不同的总线协议,各种各样的现场总线大于过程自动化、医领域、加工制造、交通运输、国防、航天、农业和楼宇等领域,大概不到十种的总线占有80%左右的市场。

  CAN

  控制器域网络(Controller Area Network, CAN)的简称,是由以研发和生产汽车电子产品著称的德国BOSCH公司开发的,并成为标准(ISO 11898),是上应用广泛的现场总线之一。 在北美和西欧,CAN总线协议已经成为汽车计算机控制系统和嵌入式工业控制域网的标准总线,并且拥有以CAN为底层协议专为大型货车和重工机械车辆设计的J1939协议。

  CAN 的高性能和性已被认同,并被广泛地应用于工业自动化、船舶、医疗设备、工业设备等方面。现场总线是当今自动化领域技术发展的热点之一,被誉为自动化领域的计算机域网。它的出现为分布式控制系统实现各节点之间实时、的数据通信提供了强有力的技术支持。

  DeviceNet

  DeviceNet是一种用在自动化技术的现场总线标准,由美国的Allen-Bradley公司在1994年开发。DeviceNet使用控制器域网络(CAN)为其底层的通讯协定,其应用层有针对不同设备所定义的行规(profile)。主要的应用包括资讯交换、设备及大型控制系统。在美国的市场占有率较高。

  DeviceNet通讯协定是由美国的Allen-Bradley公司(后来被洛克威尔自动化公司合并)所开发,以Bosch公司开发的控制器域网络(CAN)为其通讯协定的基础。DeviceNet移植了来自ControlNet(另一个由Allen-Bradley公司开发的通讯协定)的技术,再配合控制器域网络的使用,因此其成本较传统以RS-485为基础的通讯协定要低,但又可以有较好的强健性。

  为了要推展DeviceNet在世界各地的使用,洛克威尔公司决定将此技术分享给其他厂商。后来DeviceNet通讯协定是由位在美国的独立组织开放DeviceNet厂商协会(ODVA)管理。ODVA维护DeviceNet的规格、也提供一致化测试),确保厂商的产品符合DeviceNet通讯协定的规格。

  后来ODVA将DeviceNet通讯和其他相关的通讯协定整合成通用工业协定(CIP),其中包括以下的通讯协定:

  1. EtherNet/IP(其N为大写,此处的IP不是网际协议,为“Industrial Protocol”的简称)

  2. ControlNet

  3. DeviceNet

  4. CompoNet

  CCL-Link

  CC-Link是Control&Communication Link(控制与通信链路系统)的缩写,在1996年11月,由三菱电机为主导的多家公司推出。在其系统中,可以将控制和信息数据同时以10Mbit/s高速传送至现场网络,具有性能、使用简单、应用广泛、节省成本等优点。其不仅解决了工业现场配线复杂的问题,同时具有的抗噪性能和兼容性。

  CC-Link是一个以设备层为主的网络,同时也可覆盖较高层次的控制层和较低层次的传感层。

  Profibus

  PROFIBUS – DP的DP即Decentralized Periphery。它具有高速低成本,用于设备级控制系统与分散式I/O的通信。它与PROFIBUS-PA(Process Automation )、PROFIBUS-FMS (Fieldbus Message Specification )共同组成了PROFIBUS标准。

  PROFIBUS是一个用在自动化技术的现场总线标准,在1987年由德国西门子公司等十四家公司及五个研究机构所推动,PROFIBUS是程序总线网络(PROcess FIeld BUS)的简称。PROFIBUS和用在工业以太网的PROFINET是二种不同的通信协议。

  1、Profibus-DP

  PROFIBUS–DP协议明确规定了用户数据怎样在总线各站之间传递,但用户数据的含义是在PROFIBUS行规中具体说明的。另外,行规还具体规定了PROFIBUS-DP如何用于应用领域。使用行规可使不同厂商所生产的不同设备互换使用,而工厂操作人员毋须关心两者之间的差异。因为与应用有关的含义在行规中均作了的规定说明。

  Profibus-DP用于现bai场层的高速数送。du在这一级,处理器(如PLC,PC)通过高zhi速串行线同分散dao的现场设备(i/0,驱动器、阀门等)进行通讯。

  PROFIBUS DP(分布式周边,Decentralized Peripherals)用在工厂自动化的应用中,可以由控制器控制许多的传感器及执行器,也可以利用标准或选用的诊断机能得知各模块的状态。

  2、Profibus-PA

  Profibus-PA 适用于Profibus过程自动化。PA 将自动化系统和过程控制系统与压力、温度和液位变送器等现场设备连接起来,并可用来替代4-20mA的模拟技术。

  PROFIBUS PA(过程自动化,Process Automation)应用在过程自动化系统中,由过程控制系统监控量测设备控制,是本质的通信协议,可适用于防爆区域(工业防爆危险区分类中的Ex-zone 0及Ex-zone 1)。其物理层(缆线)匹配IEC 61158-2,允许由通信缆线提供电源给现场设备,即使在有故障时也可限制电流量,避免制造可能导致爆炸的情形。因为使用网络供电,一个PROFIBUS PA网络所能连接的设备数量也就受到限制。

  PROFIBUS PA的通信速率为31.25 kbit/s。PROFIBUS PA使用的通信协议和PROFIBUS DP相同,只要有转换设备就可以和PROFIBUS DP网络连接,由速率较快的PROFIBUS DP作为网络主干,将信号传递给控制器。在一些需要同时处理自动化及过程控制的应用中就可以同时使用PROFIBUS DP及PROFIBUS PA。

  3、Profibus-FMS

  Profibus-FMS的设计旨在解决车间监控级通信任务,提供大量的通信服务。可编程序控制器

  (如如PLC,PC机等)之间需要比现场层更大量的数送,用以完成中等传输速度进行的循环与非循环的通信服务,但通信的实时性要求低于现场层。

  1、EtherNet/IP

  工业以太网协议 (Ethernet/IP) 是由ODVA所开发并得到了罗克韦尔自动化的强大支持。它使用已用于ControlNet和DeviceNet的控制和信息协议 (CIP) 为应用层协议。

  EtherNet/IP指的是"以太网工业协议"(Ethernet Industrial Protocol)。它定义了一个开放的工业标准,将传统的以太网与工业协议相结合。

  该标准是由控制网络(CI, ControlNet International)和开放设备网络供应商协会 (ODVA)在工业以太网协会 (IEA, Industrial Ethernet Association)的协助下联合开发的,并于2000年3月推出。EtherNet/IP是基于TCP/IP系列协议,因此采用以原有的形式OSI层模型中较低的4层。标准的以太网通信模块,如PC接口卡、电缆、连接器、集线器和开关与 EtherNet/IP 一起使用。

  CIP提供了一系列标准的服务,提供“隐式”和“显示”方式对网络设备中的数据进行访问和控制。 CIP数据包在通过以太网发送前经过封装,并根据请求服务类型而赋予一个报文头。这个报文头指示了发送数据到响应服务的重要性。通过以太网传输的CIP数据包具有的以太网报文头,一个IP头、一个TCP头和封装头。封装头包括了控制命令、格式和状态信息、同步信息等。这允许CIP数据包通过TCP或UDP传输并能够由接收方解包。相对于DeviceNet或ControlNet,这种封装的缺点是协议的效率比较低。以太网的报文头可能比数据本身还要长,从而造成网络负担过重。因此,EtherNet/IP更适用于发送大块的数据 ( 如程序 ) ,而不是DeviceNet和ControlNet更擅长的模拟或数字的I/O数据。

  EtherNet Industry Protocol是适合工业环境应用的协议体系。它是基于控制与信息协议CIP(Control and Informal/on Protoco1)的网络,是一种是面向对象的协议,能够网络上隐式的实时I/O信息和显式信息(包括用于组态参数设置、诊断等)的有效传输。

  EtherNet/IP采用标准的EtherNet和TCP/IP技术来传送CIP通信包,通用且开放的应用层协议CIP加上已经被广泛使用的EtherNet和TCP/IP协议,就构成EtherNet/IP协议的体系结构。

  2、EtherCAT

  EtherCAT(以太网控制自动化技术)是一个开放架构,以以太网为基础的现场总线系统,其名称的CAT为控制自动化技术(Control Automation Technology)字首的缩写。EtherCAT是确定性的工业以太网,早是由德国的Beckhoff公司研发。

  自动化对通讯一般会要求较短的资料更新时间(或称为周期时间)、资料同步时的通讯抖动量低,而且硬件的成本要低,EtherCAT开发的目的就是让以太网可以运用在自动化应用中。

  一般工业通讯的网络各节点传送的资料长度不长,多半都比以太网帧的小长度要小。而每个节点每次更新资料都要送出一个帧,造成带宽的低利用率,网络的整体性能也随之下降。EtherCAT利用一种称为“飞速传输”(processing on the fly)的技术改善以上的问题。

  在EtherCAT网络中,当资料帧通过EtherCAT节点时,节点会复制资料,再传送到下一个节点,同时识别对应此节点的资料,则会进行对应的处理,若节点需要送出资料,也会在传送到下一个节点的资料中插入要送出的资料。每个节点接收及传送资料的时间少于1微秒,一般而言只用一个帧的资料就可以供的网络上的节点传送及接收资料。

  3、HSE

  HSE(高速以太网)连接主机、I/O子系统、网关和现场设备,运行速度为100 Mbps。基金会现场总线协议Fieldbus已经作为IEC 61804中的现场总线标准。

  4、Profinet

  PROFINET由PROFIBUS组织(PROFIBUS International,PI)推出,是新一代基于工业以太网技术的自动化总线标准。

  PROFINET为自动化通信领域提供了一个完整的网络解决方案,囊括了诸如实时以太网、运动控制、分布式自动化、故障以及网络等当前自动化领域的热点话题,并且,作为跨供应商的技术,可以兼容工业以太网和现有的现场总线(如PROFIBUS)技术,保护现有投资。

  5、EPA

  EPA是Ethernet for Plant Automation的缩写,它是Ethernet、TCP/IP等商用计算机通信领域的主流技术直接应用于工业控制现场设备间的通信,并在此基础上,建立的应用于工业现场设备间通信的开放网络通信平台。

  2005年 12月EPA被正式列入现场总线标准IEC 61158(第四版)中的第十四类型,并列为与IEC 61158相配套的实时以太网应用行规标准IEC 61784-2中的第十四应用行规簇(Common Profile Family 14,CPF14)。

  2005年 02月我国自主研发的实时以太网EPA通信协议Real time Ethernet EPA (Ethernet for Plant Automation) 顺利通过IEC各国家委员会的投票,正式成为IEC/PAS 62409文件。

  2005年 01月“2004年度工控及自动化领域十大新闻”评选结果揭晓,“EPA为IEC收录,作为PAS标准予以发布”荣膺十大新闻之列。

  2004年 11月“EPA基于高速以太网技术的现场总线控制设备”荣获第六届上海工业博览会奖。

  2004年 10月EPA实时以太网在第六届中国高新技术成果交易会上广受关注。

  2004年 09月浙大中控EPA实时以太网震撼MICONEX2004――第十五届多国仪器仪表展览会MICONEX2004。

  2004年 05月浙江大学、浙大中控主持制定的《EPA标准》(征求意见稿)通过国家标委会的审核。

  2003年 04月在EPA标准的基础上,课题组开发了基于EPA的分布式网络控制系统原型验系统,并在杭州龙山化工厂的联碱碳化装置上成功试用。

  2003年 01月浙江大学、浙大中控主持制定的《用于工业测量与控制系统的EPA系统结构与通信标准》通过专家评审。

  2003年 01月EPA国家标准起草工作组成立。

  2002年 10月浙大中控“基于以太网的EPA网络通信技术及其控制系统”项目通过了浙江省科技厅组织的技术鉴定。

  2001年 10月由浙江大学牵头,以浙大中控为主,清华大学、大连理工大学、中科院沈阳自动化所、重庆邮电学院、TC124等单位联合承担国家“863”计划CIMS主题重点课题“基于高速以太网技术的现场总线控制设备”,开始制定EPA标准。

  6、PowerLink

  开源实时通信技术Ethernet POWERLINK 是一项在标准以太网介质上,用于解决工业控制及数据采集领域数输实时性的技术。本文介绍它的基本原理、相关特性如冗余、直接交叉通信、拓扑结构、性设计,并定义其物理层与介质等内容。

  POWERLINK=CANopen+Ethernet

  鉴于以太网的蓬勃发展和CANopen在自动化领域里的广阔应用基础,EthernetPOWERLINK 融合了这两项技术的优点和缺点,即拥有了Ethernet的高速、开放性接口,以及CANopen在工业领域良好的SDO 和PDO 数据定义,在某种意义上说POWERLINK就是Ethernet 上的CANopen,物理层、数据链路层使用了Ethernet介质,而应用层则保留了原有的SDO 和PDO对象字典的结构,这样的好处在于:

  - POWERLINK 无需做较多的改动即可实现;

  -保护原有投资的利益;

  -开放性的接口;

  7、Modbus

  Modbus是由Modicon(现为施耐德电气公司的一个品牌)在1979年发明的,是个真正用于工业现场的总线协议。ModBus网络是一个工业通信系统,由带智能终端的可编程序控制器和计算机通过公用线路或部线路连接而成,可应用于各种数据采集和过程监控。

  ModBus网络只有一个主机,通信都由它发出。网络可支持247个之多的远程从属控制器,但实际所支持的从机数要由所用通信设备决定。采用这个系统,各PC可以和中心主机交换信息而不影响各PC执行本身的控制任务。

  Modbus协议定义了一个控制器能认识使用的消息结构,而不管它们是经过何种网络进行通信的。它描述了一个控制器请求访问其它设备的过程,如何回应来自其他设备的请求,以及怎样侦测错误并记录。

  Modbus是采用请求/应答方式的应用层消息协议,方便实现在低级设备和高级设备间通信,它包含三个的协议数据单元:modbus请求、modbus应答以及modbus异常应答。modbus请求中包含功能码和请求。modbus功能码有公共功能码、用户定义功能码和保留功能码三种类型。

  modbus可以采用多种通信方式,如modbus RTU与Modbus ASCII、Modbus TCP、Modbus Plus。

  8、IEC 60870-5-104

  IEC 60870-5-104是电工委员会制定的一个规范,用于适应和引导电力系统调度自动化的发展,规范调度自动化及远动设备的技术性能。IEC 60870-5-104可用于交通行业,利用IEC104规约实现城市轨道交通中变电站与基于城域网的综合监控系统的集成通信是好的一个方法,它既了电力监控系统的开放性,又能很好的满足城市轨道交通系统对电力监控系统信息传输的实时、等要求,又有利于利用标准化的优势带来开发的便捷性。

  9、BACnet

  楼宇自动控制网络数据通讯协议(A Data Communication Protocol for Building Automation and Control Networks)是由美国暖通、空调和制冷工程师协会(ASHRAE )组织的标准项目委员会135P (Stand Project Committee即SPC 135P)历经八年半时间开发的。

  BACnet 协议是为计算机控制采暖、制冷、空调系统和其他建筑物设备系统定义服务和协议,从而使BACnet协议的应用以及建筑物自动控制技术的使用更为简单。

  10、Siemens S7

  Siemens S7属于第7层的协议,用于西门子设备之间进行交换数据,通过TSAP(Transport Service Access Point,传输服务访问点),可加载MPI(Multi Point Interface,多点接口),DP(传输协议,实现控制CPU和分布式I/O之间、循环的数据交换),以太网等不同物理结构总线或网络上,PLC一般可以通过封装好的通讯功能块实现。

  11、DNP3

  DNP3全称是Distributed Network Protocol 3,分布式网络协议3,是一种应用于自动化组件之间的通讯协议,常见于电力、水处理等行业。SCADA可以使用DNP协议与主站、RTU(远程终端设备)、及IED(智能电子设备)进行通讯。

  它比起s7comm大刀阔斧做的协议栈要简单的多,是基于TCP/IP的,只是修改了应用层(但比modbus的应用层要复杂得多),在应用层实现了对传输数据的分片、校验、控制等诸多功能。

  DNP3协议是一个广泛应用于电力系统中子站与主站通讯的协议,因为DNP3协议可以封装在以太网TCP/IP上运行(默认端口为TCP的 20000端口),这样难免就会有暴露在公网的情况,而DNP3协议也比较,其主要应用在电力行业的自动化组件之间的通信,在暴露的数据中肯定不乏一些电力行业的设备以及系统。

  12、PCWorx

  2005年,菲尼克斯电气公司首次推出中文版大型工控软件 PCWORX,这是欧美公司推出的套中文版大型工控软件。该中文版工控软件的推出将大地方便中国用户对于自动化技术的学和使用,代表了欧美公司对中国市场的又一贡献。

  菲尼克斯电气的自动化技术AUTOMATIONWORX 不仅由大量的硬件和支持软件所构成,可以形成各种典型的自动化系统,如单纯的总线系统,具有功能的总线系统,以太网与总线相结合的系统,以及正在推出的网络技术”E网到底”的自动化系统;它还涵盖了 INTERBUS、Ethernet PROFINET、工业无线通讯、光纤以及等技术,PCWORX3.11是菲尼克斯电气公司的协议。

  13、OPC

  OPC(OLE for Process Control,用于过程控制的OLE)是世界上广为应用的信息交换的互操作标准,它具有性、性以及平台独立性。

  工业网络协议总体上可以归类为内部私有网络协议,其协议规约是由厂商根据自己的设备自行规定的,没有统一的协议标准。

  14、OMRON FINS

  欧姆龙是来自日本的电子和自控设备制造商,其中小型PLC在国内市场有较高的市场占有量,有CJ、CM等系列,PLC可以支持Fins,Host link等协议进行通信。支持以太网的欧姆龙PLC CPU、以太网通信模块根据型号的不同,一般都会支持FINS(Factory Interface Network Service)协议,一些模块也会支持EtherNet/IP协议,Omron fins协议使用TCP/UDP的9600端口进行通信,fins协议封装在TCP/UDP上进行通信,需要注意的是TCP模式下组包和UDP模式下在头部上有所差异。具体协议包的构造可以参考欧姆龙官方的协议文档。FINS协议实现了OMRON PLC与上位机以太网通信。

  15、Tridium Niagara Fox

  Tridium是Honeywell旗下独立品牌运作的全资子公司。采用Tridium技术的世界品牌包括:Honeywell,Siemens,JCI,Schneider,Samsung 和IBM等。Tridium创造性的开发了软件框架“Niagara Framework”。基于Niagara框架可以集成、连接各种智能设备和系统,而无需考虑它们的制造厂家和所使用的协议,形成一个统一的平台,实现互联互通互操作,并可以通过互联网基于Web浏览器进行实时控制和管理。另外,基于Niagara框架,客户可以进行二次开发,实现其专有的应用,开发其专有的产品。

  NiagaraAX平台到今天已经整合了不同层级的东西,之前谈论的大多数都是设备,硬件设备是为建筑或者园区提供基础设置的,另外一些包括安防系统、访客管理、能源计费系统、管理服务、设备、设施维护计划,资产管理、设施管理等系统,NiagaraAX可以把这些基础设备和系统相互衔接起来,使用专有的Tridium Niagara Fox协议通信,给客户创造价值。

  16、ProConOs

  ProConOS是德国科维公司(KW-Software GmbH)开发的用于PLC的实时操作系统,ProConOS embedded CLR是新型的开放式标准化PLC运行时系统,符合IEC 61131标准,可执行不同的自动化任务(PLC、PAC、运动控制、CNC、机器人和传感器)。

  通过采用标准的微软中间语言(依据IEC/ISO 23271标准为MSIL/CIL)作为设备接口,可使用C#或IEC 61131标准语言对ProConOS Embedded CLR编程,ProConOS Embedded CLR为客户提供了实时的嵌入式应用。该操作系统使用ProConOs专有的工控协议通讯,服务端口号是20547。

  17、Crimson v3.0

  红狮(Red Lion Controls)控制系统制造公司位于美国的宾西法尼亚州,可以制造多种工业控制产品从定时器和计数器到精密复杂的人机界面,具有的贴片安装和板上芯片的生产能力。红狮工程团队可以提供各种新产品设计,从应用范围很广的标准控制产品到根据客户和OEM的要求而定做的产品。美国红狮控制公司为其交货迅速、良好的客户服务和高质量的技术支持而引以为豪。

  Crimson v3.0 是redlion公司的工控系统配置软件,产品协议成为自动化市场的协议之一,免费的Crimson3.0软件拥有强大的功能,支持拖拉式组态结构,显示,控制,数据记录仪功能,是为了充分发挥MC系列产品的功能而设计开发的。大部分简单的应用程序可以一步步建立,配置相关的通讯协议和数据标签。内置多种串口和以太网口驱动程序选择菜单,可以数秒内将数据下载到MC上,内置各种驱动程序,无需编写代码就可以和各种PLC,PC机和SCADA系统通讯。

  18、MELSEC-Q

  三菱Q系列PLC以太网模块系统默认开放了TCP的5007端口和UDP的5006端口用于与GX软件进行通信,通过对通讯协议的分析,可以实现对该系列PLC设备的识别和发现。

  19、Tcnet

  TCnet是一种网络技术,由电工委员会(IEC)认为标准,并批准作为公共可用规范(PAS)发布。它基于以太网,具有实时性和高性的特点。

  20、Wnet

  WNET (.a. NetBEUI) protocol no longer performs client impersonation.

  In all previous Firebird versions, remote requests via WNET are performed in the context of the client security token. Since the server serves every connection according to its client security credentials, this means that, if the client machine is running some OS user from an NT domain, that user should have appropriate permissions to access the physical database file, UDF libraries, etc., on the server filesystem. This situation is contrary to what is generally regarded as proper for a client-server setup with a protected database.

  工业无线网

  1、IEEE 802.11(a/b/g/n)

  IEEE 802.11是现时无线域网通用的标准,它是由IEEE所定义的无线网络通信工业的标准Wi-Fi——IEEE802.11系列。

  无线域网路的个版本发表于1997年,其中定义了介质访问接入控制层(MAC层)和物理层。物理层定义了工作在 2.4GHz的ISM频段上的两种无线调频方式和一种红外传输的方式,总数输速率设计为2Mbit/s。

  两个设备之间的通信可以自由直接(ad hoc)的方式进行,也可以在基站(Base Station, BS)或者访问点(Access Point,AP)的协调下进行。为了在不同的通讯环境下取得良好的通讯品质,采用 CSMA/CA (Carrier Sense Multi Access/Collision Aviodance)硬件沟通方式。

  1999年加上了两个补充版本: 802.11a定义了一个在5GHz ISM频段上的数输速率可达54Mbit/s的物理层,802.11b定义了一个在2.4GHz的ISM频段上但数输速率高达11Mbit/s的物理层。 2.4GHz的ISM频段为世界上大多数国家通用,因此802.11b得到了为广泛的应用。

  苹果公司把自己开发的802.11标准起名叫 AirPort。1999年工业界成立了Wi-Fi联盟,致力解决符合802.11标准的产品的生产和设备兼容性问题。

  802.11a,1999年,物理层补充(54Mbit/s工作在5GHz) 。

  802.11b,1999年,物理层补充(11Mbit/s工作在2.4GHz) 。

  802.11g,2003年,物理层补充(54Mbit/s工作在2.4GHz) 。

  802.11n,更高传输速率的改善。

  2、Rfieldbus

  Wireless Fieldbus-RFieldbus

  RFieldbus是在现场总线PROFIBUS基础上研制的一种具有传送IP数据包能力的无线实时通讯系统,又称无线现场总线。

  3、ZigBee

  ZigBee,也称紫蜂,是一种低速短距离传输的无线网上协议,底层是采用IEEE 802.15.4标准规范的媒体访问层与物理层。主要低速、低耗电、低成本、支持大量网上节点、支持多种网上拓扑、低复杂度、、、。

  工业协议常用端口

  协议名称端口号牵头组织应用行业MODBUS502Modicon公司的,被施耐德电气仪器仪表、RTU、过程自动化领域等EtherNet/IP44818罗克韦尔自动化公司过程自动化领域BACnet47808ISO、ANSI、ASHRAE智能楼宇控制S7102西门子通信协议过程自动化领域DNP320000IEEE水处理FINS9600欧姆龙公司过程自动化领域GE SRTP18245美国通用电器,发那科过程自动化领域MELSEC-Q5006/5007日本三菱过程自动化领域Tridium-Niagara Fox协议1911Tridium公司智能建筑、基础设置管理、安防等行业Crimson V3789redlion公司工控系统配置软件CIP44818ODVA过程自动化IEC-60870-5-1042400/2404电工委员会(IEC)电力行业Moxa Npot4800台湾MOXA公司过程自动化PCWorx1962菲尼克斯过程自动化IEC6185048571电工委员会(IEC)电力行业OPC DA动态端口OPC组织数据采集OPC UA4840OPC组织数据采集EGD18246GE,发那科过程自动CC-link串口三菱电机过程自动化EtherCAT34980Beckhoff过程自动化CANopen串口CiA组织过程自动化ControlNet44818罗克韦尔过程自动化Deveicenet串口罗克韦尔过程自动化Powerlink无贝加莱、Kuka、 Hirschmann过程自动化Host link串口欧姆龙公司过程自动化Profinet34962、34963、34964西门子过程自动化PROFIBUS串口西门子过程自动化AS-i串口西门子过程自动化IO-Link串口西门子过程自动化SERCOSIII无IEC1491过程自动化HSE1089、1090、1091IEC 61804过程自动化ROC Plus4000EmersonDCSFoxboro DCS FoxApi55555FoxboroDCSFoxboro DCS AIMAPI45678FoxboroDCSFoxboro DCS Informix1541FoxboroDCSLonWorks2540、2541美国埃施朗公司半导体制造、照明控制系统、能源等行业ICCP(IEC 60870-6/TASE.2)102IEC输电、配电和不同区域的发电厂DyNet串口飞利浦PLCDF1串口Allen-BradleyPLCProConOs20547德国科维高性能PLC运行时间引擎EPA35004浙大中控化工领域MELSEC-Q5007三菱命令处理程序

  在工业控制系统ICS中使用的通信协议在不同的行业、不同的区域和不同的供应商之间差别很大。

  1、电力行业

  1.1 IEC 60870-5

  IEC 60870-5可能是上的变电站自动化协议。在美国,它在功能同于DNP3,它使用IEC 60870-5的部分来为数据链路层提供基础。已经制定了许多配套标准,包括以下内容:

  IEC 60870-5-101:用于远程控制、远程保护相关的电力系统,是具有监视、控制功能的通信传输协议IEC 60870-5-103:实现保护装置和变电站控制系统设备之间互操作性的传输协议IEC 60870-5-104:是IEC 60870-5-101的扩展,包括传输、网络、链路和物理层服务的变化,以及与TCP/IP和其他传输(ISDN、X.25帧中继等)连接的套件IEC 60870-5典型的通信介质包括以太网和串行,典型端口为2404/UDP和2404/TCP。

  1.2 分布式网络协议3.0(DNP3)

  DNP3广泛应用于北美地区,主要用于替代IEC 60870-5系列协议。它是在20世纪90年代早期开发的一种串行协议,但现在也存在UDP/IP和TCP/IP变体版本。DNP3和IEC 60870-5之间存在许多相似之处,因为IEC 60870-5开发委员会的几个成员在开发过程中离开,创建了后来的DNP3。因此,DNP3和IEC 60870-5的数据链路层相似,但协议的上层差异性较大。

  DNP3主要应用于北美电力行业,但该协议也渗透到自来水和污水处理行业。根据牛顿-埃文斯研究公司调查,2008年北美电力公司中有一半以上使用DNP3协议的UDP/IP或TCP/IP变体版本。

  目前,研究者正在开发DNP3的扩展,预计这些扩展将提供链接加密和密钥管理服务。

  DNP3协议典型的通信介质包括以太网和串行连接,DNP3通常使用端口有20000/UDP,20000/TCP,19999/UDP和19999/TCP。

  1.3 基金会现场总线(FOUNDATION Fieldbus)

  基金会现场总线协议是不同工业进程中的主要现场总线协议。它主要用于过程/工厂自动化,已部署在各种装置中,包括发电厂/发电机控制和半导体制造的控制。Fieldbus的通信介质包括双绞线和光纤。典型端口包括1089/UDP,1089/TCP,1090/UDP,1090/TCP,1091/UDP和1091/TCP。

  现场总线基金会网站上提供了基金会现场总线协议支持设备的公共列表。现场总线基金会的成员包括350多家领先的控制系统和仪表供应商以及一些用户。

  1.4 控制中心间通信协议(ICCP)

  ICCP(IEC 60870-6/TASE.2)用于控制中心之间的通信,主要用于电力行业。在美国,ICCP网络经常被用于公用事业公司的协同 -- 通常是具有传输业务的公用事业,如输电、配电和不同区域的发电厂,将这些不同区域的服务商连接在一起,可以以协调不同地区之间的电力输入和输出。ICCP通常使用端口102/TCP。

  1.5 Modbus协议

  由于其使用简单、可免费下载以及免版权费部署等特性,Modbus成为领域中的控制协议。

  PLC和继电器等智能设备通常使用Modbus协议或者其变体与远程RTU等简单设备进行通信。除Modbus标准协议外,Modbus +是普遍的一个变体。Modbus网站上提供了Modbus成员列表(属于Modbus开发人员组的公司和开发人员)。此列表包括各个成员以及每个成员制造的产品的简要说明。还提供了Modbus供应商列表、Modbus设备列表以及提供Modbus系统集成服务的公司列表。

  现在有许多Modbus变体,Modbus RTU是一种开放标准、允许通过串行连接进行通信的二进制编码协议。Modbus ASCII也是一种开放标准、支持串行连接的ASCII编码协议。Modbus/TCP是一种开放标准、它将Modbus RTU有效负载封装在TCP数据包中,并对功能码进行了一些限制。Modbus/UDP因供应商而异,但常见的是通过UDP传输Modbus/TCP。Modbus +是一种扩展的高速(1Mbps)版本,它使用令牌传递技术进行传输介质访问控制,但Modbus +是Modicon的专有协议。Enron(或Daniels)Modbus是标准的Modbus协议,具有供应商扩展,将32位值视为一个寄存器而不是两个。JBus是具有较小的寻址变化的Modbus协议版本。

  Modbus典型的通信介质包括以太网和串口(RS485双线常见)。Modbus通常在端口502/TCP上通信。

  2 石油和天然气行业

  石油和天然气行业没有明显的主流协议。该行业使用各种协议,如DNP3,IEC 60870-5和Modbus。节更深入地讨论了这些协议。多种现场总线协议,如基金会现场总线协议Feildbus,也能在许多石油和天然气设施中也能看到。

  石油和天然气行业的通信经常通过无线进行传输,通过RTU和传感器为PLC提供流量和压力数据,PLC运行保护系统和油井控制系统等。

  2.1 DNP3和IEC 60870-5

  关于DNP3和IEC 60870-5的讨论在5.2节的电力行业部分中已经给出。在Triangle Microworks Inc.网站上,列出了使用DNP3和IEC 60870-5的石油和天然气公司的清单,在该网站还可以找到关于协议的白皮书。

  典型的通信介质包括以太网和串行连接。DNP3通常使用端口20000/UDP,20000/TCP,19999/UDP和19999/TCP,而IEC 60870-5通常使用2404/UDP和2404/TCP。

  2.2 Modbus协议

  如第5.2节中对Modbus的描述所述,Modbus是石油和天然气领域的流行控制协议。另外基金会现场总线协议在石化领域也很受欢迎。

  典型的通信介质包括以太网和串口(RS485双线常见)。Modbus通常在端口502/TCP上运行。

  3 水处理行业

  3.1 DNP3协议

  如第5.2节中对DNP3的描述所述,该协议在水处理领域也很受欢迎。典型的通信介质包括以太网和串行连接。DNP3通常使用端口20000/UDP,20000/TCP,19999/UDP和19999/TCP。

  3.2 Modbus协议

  在上文关于电力行业部分,对Modbus的描述中提到过,Modbus是水处理行业中比较流行控制协议。典型的通信介质包括以太网和串行总线。Modbus通常在端口502/TCP上运行。

  4 建筑自动化领域

  在建筑自动化领域,LonWorks(也称为LonTalk或ANSI/CEA 709.1B)是主流的通信协议,其次是DyNet,还有一些其他通信协议。典型的通信介质包括电力线载波、双绞线/以太网、光纤和RF。主要通信端口包括2540/UDP,2540/TCP,2541/UDP和2541/TCP。

  4.1 LonWorks (LonTalk, 或ANSI/CEA 709.1-B)

  美国埃施朗公司(Echelon)基于LonWorks协议了一个网络平台,也叫做LonWorks平台。该平台广泛应用于许多行业,包括半导体制造、照明控制系统、能源管理系统、HVAC系统、安防系统、家庭自动化、消费电器控制、公共街道照明/监控/控制和加油站控制。LonWorks的典型应用是用作恒温器,通过LonTalk协议与PC和PLC通信,来协调建筑物内部的空调和通风系统(HVAC)。

  ISO和IEC已授予LonWorks平台兼容性标准号ISO/IEC 14908-1,-2,-3和-4(ANSI/CEA-852)。LonWorks还构成了IEEE 1473-L(列车网络,Locomotive networking)以及其他几个特定的应用领域的应用。中国已批准LonWorks作为国家控制标准(GB/Z 20177.1-2006)并作为建筑和智能社区标准(GB/T 20299.4-2006)。欧洲设备制造商委员会也已将LonWorks作为其家用电器控制和监控 - 应用互通规范标准的一部分。

  4.2 DyNet

  DyNet是由Dynalite(现为飞利浦电子公司)开发的专有协议。DyNet设备包括自己的可编程控制器,并通过点对点模型通信。

  DyNet典型的通信介质包括RS-485串行总线、RS-232串行总线、以太网和红外。

  4.3 其他协议

  还有许多协议用于建筑自动化系统。的包括INSTEON,X10,ZigBee,X-Wave和KNX/Konnex。

  5 过程自动化(制造业)领域

  过程自动化领域的以现场总线协议为主,包括PROFINET、基金会现场总线协议Fieldbus和通用工业协议CIP及其衍生协议。IEC 61158和IEC 61784包含每种主要现场总线协议及其变体的详细说明。

  5.1 DF1协议

  DF1是ANSI X3.28协议中D1和F1部分中定义的串行通信协议。该协议初由Allen-Bradley(现为罗克韦尔自动化公司)开发,通常用作向Allen-Bradley PLC传输可编程控制器通信命令(PCCC)。

  5.2 基金会现场总线协议Fieldbus

  基金会现场总线协议Fieldbus适用于基本和高级调节控制的应用,以及与这些功能相关的大部分离散控制场景。基金会现场总线协议Fieldbus有两种不同速度和不同传输媒介运行的实现方式:H1是常见的实现方式,通常连接现场设备并以31.25Kbps运行; HSE(高速以太网)连接主机、I/O子系统、网关和现场设备,运行速度为100 Mbps。基金会现场总线协议Fieldbus已经作为IEC 61804中的现场总线标准。

  5.3 过程现场总线协议Profibus

  Profibus由德国教育和研究部门BMBF开发。它有两种变体,其中较常见的变体是分散式外围设备(DP)协议,通常用于集中控制器与传感器/执行器的通信;另一种变体是过程自动化(PA)协议,用于过程控制系统PCS监控测量设备。PA变体设计并用于爆炸性或危险区域,并使用符合IEC 61158-2的物理传输链路。PA和DP相同的基本相同的通信规约,但PA的运行速度为31.25Kpbs。DP网络和PA网络可以通过一个耦合器连接起来,DP用作骨干网。Profibus现场总线协议包含在IEC 61158和IEC 61784标准中。

  5.4 Profinet IO协议

  PROFINET概念具有两个视角:PROFINET CBA和PROFINET IO,两者都可以在同一总线系统上进行通信。它们可以单独操作或组合使用,PROFINET IO子系统可以从另一个角度作为PROFINET CBA系统。

  POFINET IO开发用于与分布式外围设备的实时(RT)和等时(IRT)通信,实时通信RT的周期时间为10毫秒,等时通信IRT驱动循环时间为1ms或更短。PROFINET CBA适用于通过TCP/IP进行基于组件的通信,以及用于模块化系统工程中的实时通信。两种通信通信模式可以并行使用。PROFINET CBA的反应时间范围为100ms。

  PROFINET现场总线协议包含在IEC 61158和IEC 61784标准中。

  5.5 CC-Link协议

  CC-Link是由日本三菱电机开发,并被其他日本供应商广泛采用的一种现场总线协议。目前,使用CC-Link设备总数超过600万台,涵盖1000多种不同的设备。使用CC-Link协议的工业以太网可以很方便的跟传统的IT网络进行集成。

  有四种CC-Link格式:

  ① CC-Link。

  ② CC-Link LT(用于低通信需求设备的轻量化版本)。

  ③ CC-Link Safety(高性版本,符合IEC 61508 SIL3和ISO13849-1 Cat 4标准)。

  ④ CC-Link IE(工业以太网版)典型的CC-Link通信介质包括双绞线和光纤,CC-Link合作伙伴协会提供合作伙伴名单。

  5.6 通用工业协议(CIP)

  通用工业协议(CIP)尝试为整个制造业提供统一的通信架构。CIP是EtherNet/IP、DeviceNet、CompoNet和ControlNet的等协议的统一应用层协议。CIP包含一整套消息和服务,用于收集制造自动化应用程序的控制、、同步、运动、配置等信息。该协议由Open DeviceNet Vendors Association (ODVA)管理。

  5.7 ControlNet协议

  ControlNet是由Allen-Bradley开发的一种CIP实现。ControlNet具有支持冗余链路电缆的内置功能,通信都经过严格的安排从而具有高度确定性。

  ControlNet物理层是使用BNC连接器的RG-6同轴电缆或光纤。ControlNet使用曼彻斯特编码,总线速度为5 Mbps。链路层的运行周期称为网络更新时间(NUT),每个NUT具有两个阶段,阶段预留给的常规流量传输,以传输机会,第二阶段用于没有的计划外流量传输。ControlNet的大帧大小为510字节。

  5.8 DeviceNet协议

  DeviceNet是由Allen-Bradley开发的另一个CIP实现版本。DeviceNet位于控制器区域网络(CAN)物理层,并采用ControlNet技术,与传统的基于RS-485的协议相比,它的成本更低和健壮更高。

  DeviceNet的波特率分别为125 Kbps、250 Kbps和500 Kbps,主干线长度与总线速度成反比,即分别为500米、250米和125米。大多数部署使用主/从模式,但也可以使用点对点传输。多个主设备在单个逻辑网络上共存。DeviceNet经过精心设计,可以在复杂的电磁环境下稳定运行。

  5.9 EtherNet/IP协议

  EtherNet/IP是由罗克韦尔自动化开发的CIP协议的实现版本。协议的应用层是CIP。EtherNet/IP是在标准TCP/IP堆栈上构建的应用层协议,它将网络上的设备统一视为一系列“对象”,底层利用现有的以太网基础设施(无论速度如何)。整个EtherNet/IP堆栈可以在通用处理器上通过软件实现,无需ASIC或现场可编程门阵列(FPGA)。EtherNet/IP利用44818/TCP进行显式消息传递和2222/UDP用于隐式消息传递。

  5.10 EtherCAT协议

  EtherCAT(Ethernet for Control Automation Technology)是用于控制自动化技术的以太网协议,其Ethertype为0x88A4,通过将帧数据插入UDP数据包可以实现IP可路由。EtherCAT没有采用每个周期每个节点处理一个帧(更新时间)的模式,而是使用“即时处理”模式。EtherCAT不是简单的从设备接收以太网帧,而是在数据报通过设备时读取发往它们的数据,并在每个节点处作为过程数据进行解释和复制,类似地,在数据报通过时插入输入数据。许多节点可以用一帧寻址。

  EtherCAT网络可以通过网关与CANopen,DeviceNet,PROFIBUS和其他协议集成。EtherCAT技术组是用户和供应商组建的组织; 截至2009年8月,它由来自47个国家的1100多家公司组成。EtherCAT作为现场总线协议包含在IEC 61158和IEC 61784标准中。EtherCAT使用端口34980/UDP和34980/TCP在以太网LAN之间进行路由。

  5.11 EGD协议(Ethernet Global Data)

  以太网全数据(EGD)协议是一种通信机制,它使一个CPU能够以定期调度的周期速率与一个或多个其他CPU共享其内部存储器的一部分。某些GE发那科的PLC使用EGD协议。

  5.12 FINS协议

  FINS是欧姆龙(一家日本控制公司)开发的协议,并在其新的PLC中使用。它通常使用端口9600/UDP在支持IP的系统上运行。

  5.13 Host Link协议

  Host Link是欧姆龙为其旧PLC系列开发的协议,但是,许多新的欧姆龙PLC仍然可以使用HostLink协议进行通信。它是基于ASCII码的RS-232总线协议。

  5.14 SERCOS协议(Serial Real-Time Communication System)

  SERCOS具有严格的实时要求,尤其适用于运动控制,例如金属切割和成型、机械装配、包装、机器人、印刷和材料处理等领域。该协议由SERCOS International管理,目前的版本是SERCOS III。SERCOS在IEC 61158和IEC 61784标准中有详细的定义。

  5.15 SRTP协议(Service Request Transfer Protocol)

  SRTP是一种用于通过PC向PLC进行命令和数据通信的协议。它被GE发那科PLC用作应用层通信协议。

  5.16 Sinec H1协议

  Sinec H1是西门子开发的传输层协议,不同的应用层协议可以在其上运行。该协议的大带宽特性使其成为大数据量传输的理想选择。

  《安徽省广德县城市地下综合管廊建设规划(2014-2030)》已于2016年8月14日完成评审,现在进行规划批前公示,公示时间2016年8月24日至2016年10月12日共计30个工作日。

  广德县城市地下综合管廊建设规划文本依照《中华人民共和国城市规划法》、《关于加强城市地下管线建设管理的指导意见》(国办〔2014〕27号)、《关于加强城市基础设施建设的实施意见》(皖政〔2014〕46号)、《关于推进城市地下综合管廊建设的指导意见》(国办发〔2015〕61号)、《关于开展城市地下综合管廊建设规划编制工作的通知》(建城函〔2015〕731号)等法规条例,根据《广德县城市总体规划》(2014 - 2030),结合广德县城市发展的实际情况制定。

  本规划文本、图册、规划说明书,适用于规划区内各项综合管廊设施的规划与建设。凡在规划区内的各项综合管廊设施规划与建设均应符合本规划文本。

  与城市总体规划、各片区控制性详细规划相符合,与地下管线综合规划、道路网规划等专项规划相衔接,同时兼顾区域性基础设施、交通运输等专项规划,坚持因地制宜、远近结合,集约利用地下空间,合理布置综合管廊内部空间,协调综合管廊与其他地上、地下工程的关系,规划年限与城市总体规划一致,并预留远景发展空间。

  构建适用、、经济、科学的地下管线综合管廊体系,统筹地下管线建设、节约利用地下空间、道路反复开挖、增强地下管线防灾能力,为综合管廊建设、运营和管理提供依据。

  本次规划范围为城市总体规划中的广德县中心城区规划范围至2030年41.01平方公里的城市建设用地范围。

  近期:2014年 - 2020年

  远期:2020年 - 2030年

  远景:2030年以后

  文本中用“黑体字”带下划线标明的条例或语句为本规划的强制性内容。

  1. 《广德县城市总体规划》(2014 - 2030)

  2. 《广德县城北区控制性详细规划》

  3. 《广德县城西片区控制性详细规划》

  4. 《广德县城南片区控制性详细规划》

  5. 《广德县老城区控制性详细规划》

  6. 《商杭客专广德南站控制性详规》

  7. 《广德县经济技术开发区 一期控规》

  8. 《广德县经济技术开发区 二期控规》

  9. 《广德县经济技术开发区 三期控规》

  10. 《广德县祠山岗控制性详细规划》

  11. 《广德县综合交通体系规划(2015 - 2030)》

  12. 《广德县电力专项规划》(2012~2020年)

  13. 《广德县城区10kV配电网络2012~2016年发展规划及远景展望》(送审稿)

  14. 广德县已编制的其他各市政工程管线专项规划等

  15. 广德县已编制的其他分区规划、近期建设规划、控制性详细规划等

  16. 《城市综合管廊工程技术规范》(GB 50838 - 2015)

  17. 《城市工程管线综合规划规范》(GB 50289 - 1998)

  18. 《建筑结构荷载规范》(GB 50009 - 2012)

  19. 《混凝土结构设计规范》(GB 50010 - 2010)

  20. 《建筑地基基础设计规范》(GB 50007 - 2011)

  21. 《建筑抗震设计规范》(GB 50011 - 2010)

  22. 《建筑地基处理技术规范》(JGJ 79 - 2012)

  23. 《地下工程防水技术规范》(GB 50108 - 2008)

  24. 《电气装置安装工程电缆线路施工及验收规范》(GB 50168 - 2006)

  25. 《建筑照明设计标准》(GB 50034 - 2013)

  26. 《建筑电气工程施工质量验收规范》(GB 50303 - 2002)

  27. 《工业建筑供暖通风与空气调节设计规范 》(GB 50019-2015 )

  28. 《民用建筑供暖通风与空气调节设计规范》(GB 50736-2012 )

  29. 《室外给水设计规范》(GB 50013 - 2006)

  30. 《室外排水设计规范》(GB 50014 - 2006)(2014版)

  31. 《建筑设计防火规范》(GB 50016 - 2014)

  32. 《气体灭火系统设计规范》(GB 50370 - 2005)

  33. 《城市电力电缆线路设计技术规定》(DL/T 5221 - 2005)

  34. 《电力工程电缆设计规范》(GB 50217 - 2007)

  35. 《综合布线系统工程设计规范》(GB 50311 - 2007)

  36. 《综合布线系统工程验收规范》(GB 50312 - 2007)

  37. 现行相关国家、省级地方标准和法规

  综合管廊以集约化的方式实现了管线的集中敷设,节约了宝贵的地下空间,有利于管线的集中管理、维护和监控,有利于中心城区交通、环境的改善,有利于提高广德县城市基础设施水平,也可为广德县开发基础设施建设积累经验,为市政管线的数字化、创建“智慧城市”提供便捷条件。同时,广德县综合管廊建设上有较好的支持、经济基础,也受到群众欢迎。所以,广德县进行综合管廊的规划与建设既是有必要的,也是可行的。

  以广德县“皖苏浙边界重要的制造业基地、区域性物流集散地和具有生态园林特的现代化工贸旅游城市”城市性质为指导,结合城市区域职能定位、经济职能定位和城市形象特,围绕“纵横双轴,两核四片,五水六岸,九组团”用地空间布结构,确定广德县城市地下综合管廊“一主一副、一环七横七纵”建设目标。预计至2030年,全县建成城市地下综合管廊40.8km。

  以优化老城区管线结构、提升新城区主干管线建设标准为目标,初步实现中心城区强电、弱电、给水等管线入廊,较大改善城市市容市貌,明显提高管线运营与保障能力。预计至2020年,全县建成城市地下综合管廊15.9km。

  以完善“一主一副、一环七横七纵”综合管廊体系为目标,基本形成综合管廊骨架,实现中心城区强电、弱电、给水等管线在综合管廊内的联通,显著改善城市市容市貌,进一步提高管线运营和保障能力。预计至2030年,全县增建城市地下综合管廊22.4km。

  根据城东片区开发需求,通过综合管廊的延展提供相关的管线供给,形成“一主一副、一环七横七纵”综合管廊体系。预计至2030年后,全县增建城市地下综合管廊2.5km。

  本规划综合管廊建设区域为广德县中心城区范围,包括:老城组团、城西组团、城南政务组团、城南新区组团、高铁新城组团、城北组团、城东组团、开发区组团以及祠山岗片区。具体建设区域参见管廊建设区范围图。

  一主一副:中心城区统筹建设,主城区为主要建设区域,祠山岗片区为副建设区域,监控平台联网。执行共同的入廊、管理办法。主副综合管廊控制中心之间采用通讯线路进行信息共享互通。

  一环七横七纵:太大道、天寿路、爱民路、松涛路形成一环,国华路(西段、东段)、太大道、景贤街、桐汭路、爱民路、南三路形成七横,松涛路、升平南街、桃州南路、万桂山路、天寿路、旺塘路形成七纵。具体布置参见综合管廊系统规划图。

  综合管廊应设置控制中心,控制中心宜与邻近公共建筑合建,建筑面积应满足使用要求。广德县中心城区共设置3处控制中心:城西片区(位置待定)、高铁片区(位置待定)、祠山岗片区在国华路与旺塘路交叉口的行政办公楼。

  对于支线综合管廊,纳入强电、弱电、给水管线,对于缆线管廊,纳入强电、弱电。雨水、污水等重力流管道和燃气管道不纳入综合管廊。建议部分综合管廊内预留中水管位以应对中水管线需求。

  1. 广德县城市地下综合管廊采用支线综合管廊和缆线管廊两种形式。

  2. 规划综合管廊的断面形式采用单舱矩形断面,若采取顶进施工,可采用圆形断面。

  支线综合管廊断面根据收纳管线的类型、数量、尺寸以及管道安装净距的要求确定管廊断面尺寸,分为A型、B型和C型;缆线管廊断面根据收纳管线的类型、数量和尺寸确定管廊断面尺寸,分为D型和E型。综合管廊断面形式、在道路横断面上的布置以及收纳管线可参见管廊横断面示意图以及管廊断面详细情况列表。

  1. A型综合管廊:容纳12回10kV强电、16孔通信、一根DN600给水管线,内部有人行空间,建设方式为明挖沟槽现浇施工。综合管廊内部空间截面尺寸:2.8m×2.6m。适用道路:万桂山路、太大道(松涛路-天寿路)、爱民路。

  2. B型综合管廊:容纳12回10kV强电、16孔通信、一根DN300给水管线,内部有人行空间,建设方式为明挖沟槽现浇施工。综合管廊内部空间截面尺寸:2.4m×2.4m。适用道路:横山路、桐汭西路、天寿路(太大道-光藻路)、南三路、桃州南路、国华路(朱街路-广宜路)、旺塘路。

  3. C型综合管廊:容纳4回10kV强电、2回110kV强电、16孔通信、一根DN300给水管线,内部有人行空间,建设方式为明挖沟槽现浇施工。综合管廊内部空间截面尺寸:2.4m×2.4m。适用道路:国华路(天寿路-长安路)。

  4. D型综合管廊:容纳12回10kV强电、16孔通信,一根DN600给水管线,预留一根DN200中水管位,内部有人行空间,建设方式为明挖沟槽现浇施工。综合管廊内部空间截面尺寸:2.8m×2.6m。适用道路:太大道(天寿路-建设路)。

  5. E型综合管廊:容纳12回10kV强电、16孔通信,一根DN300给水管线,预留一根DN200中水管位,内部有人行空间,建设方式为明挖沟槽现浇施工。综合管廊内部空间截面尺寸:2.4m×2.4m。适用道路:天寿路(北环路-太大道)。

  6. F型综合管廊:容纳12回10kV强电、16孔通信,内部有操作空间,建设方式为明挖沟槽现浇施工。综合管廊内部空间截面尺寸:2.0m×1.3m。适用道路:景贤街、升平南街。

  1. 综合管廊平面中心线宜与道路中心线平行。

  2. 综合管廊位置应根据道路横断面、地下管线和地下空间利用情况等确定。具体参见三维控制线划定图。

  1. 支线综机管廊宜设置在道路绿化带、人行道或非动车道下,尽量设在绿化带下,出入口、投料口、通风口等配套设施的设置空间。

  2. 缆线管廊宜设置在人行道下。

  3. 从角度出发,建议综合管廊平面布置避开燃气管道,考虑布置在道路的无燃气管道一侧。

  4. 规划给出了综合管廊I、II、III三种不同情形的定位,各条道路按照各自规划断面选取对应定位类型。

  综合管廊的覆土深度应根据地下设施竖向规划、行车荷载、绿化种植及设计冻深等因素综合确定。支线综合管廊覆土深度不小于2.5m,缆线管廊覆土深度为人行道铺装厚度。

  综合管廊穿越城市路、主干路、公路时,宜垂直穿越;受条件限制时可斜向穿越,小交角不宜小于60°。

  综合管廊穿越河道时应选择在河床稳定的河段,小覆土深度应满足河道整治和综合管廊运行的要求,并应符合下列规定:

  1. 在I~V级航道下面敷设时,顶部高程应在远期规划航道底高程2.0m以下;

  2. 在VI、VII级航道下面敷设时,顶部高程应在远期规划航道底高程1.0m以下;

  3. 在其他河道下面敷设时,顶部高程应在河道底设计高程1.0m以下。

  综合管廊与相邻地下管线及地下构筑物的小净距应根据地质条件和相邻构筑物性质确定。采用明挖施工时,距地下构筑物水平净距不小于1.0m、距地下管线水平净距不小于1.0m;采用顶管、盾构施工时距地下构筑物和地下管线水平净距均不小于综合管廊外径。

  综合管廊的监控中心与综合管廊之间宜设置连接通道,通道的净尺寸应满足日常检修通行的要求。

  综合管廊与其他方式敷设的管线连接处,应采取密封和差异沉降的措施。

  综合管廊内纵向坡度超过10%时,应在人员通道部位设置防滑地坪或台阶。

  1. 支线综合管廊应设置人员出入口、逃生口、吊装口、进风口、排风口、支线分支口等。

  2. 缆线管廊仅对管线分支口作要求。

  3. 支线综合管廊的人员出入口、逃生口、吊装口、进风口、排风口等露出地貌的构筑物应满足城市防洪要求,并因采取地面水倒灌及小动物进入的措施。

  4. 支线综合管廊人员出入口宜与逃生口、吊装口、进风口结合设置,且不应少于2个。

  综合管廊逃生口的设置间距不宜大于200m。逃生口尺寸不应小于1m×1m,当为圆形时,内径不应小于1m。

  综合管廊吊装口的大间距不宜超过400m。吊装口净尺寸应满足管线、设备、人员进出的小允许界限要求。

  综合管廊进、排风口的净尺寸应满足通风设备进出的小尺寸要求。

  露出地面的各类孔口盖板应设置在内部使用时易于人力开启,且在外部使用时非人员开启的装置。

  控制中心的面积按照实际需要进行设置,不宜小于150m2。

  根据综合管廊负荷性质,综合管廊工程一般采用10kV和0.4kV两个电压等级。按负荷供电分区情况,每一分区需在负荷中心位置设置10kV/0.4kV变配电所一座,其中综合管廊控制中心设10kV总变配电所,沿线分设变电所。

  支线分支口根据出线类型分为电力引出口、给水管引出口、通信管线引出口。支线分支口建议采用管线集中出入口形式,根据各类市政管线规划,结合地块开发单元和街坊布,规划每200~300m设置一处支线分支口。

  支线综合管廊应同步建设消防、通风、供电、照明、监控与报警、排水、标识等设施。缆线管廊对附属设施不作要求。

  1. 支线综合管廊舱室火灾危险性分类为丙类。

  2. 综合管廊主结构体应为耐火限不低于3.0h的不燃性结构。

  3. 综合管廊内不同舱室之间应采用耐火限不低于3.0h的不燃性结构进行分隔。

  4. 除嵌缝材料外,综合管廊内装修材料应采用不燃材料。

  5. 综合管廊交叉口及各舱室交叉部位应采用耐火限不低于3.0h的不燃性墙体进行防火分隔,当有人员通行需求时,防火分隔处的门应采用甲级防火门,管线穿越防火隔断部位应采用阻火包等防火封堵措施进行严密封堵。

  6. 综合管廊内应在沿线、人员出入口、逃生口等处设置灭火器材,灭火器材的设置间距不应大于50m,灭火器的配置应符合现行国家标准《建筑灭火器配置设计规范》GB 50140的有关规定。

  7. 支线综合管廊中容纳6根及以上电力电缆的舱室应设置自动灭火系统。

  8. 综合管廊内的电缆防火与阻燃应符合国家现行标准《电力工程电缆设计规范》GB 50217和《电力电缆隧道设计规程》DL/T 5484及《阻燃及耐火电缆  塑料缘阻燃及耐火电缆分级和要求  部分:阻燃电缆》GA 306.1和《阻燃及耐火电缆  塑料缘阻燃及耐火电缆分级和要求  第2部分:耐火电缆》GA 306.2的有关规定。

  1. 综合管廊宜采用自然进风和机械排风相结合的通风方式。

  2. 综合管廊的通风量应根据通风区间、截面尺寸并经计算确定,且应符合下列规定:正常通风换气次数不应小于2次/h,事故通风换气次数不应小于6次/h。

  3. 综合管廊的通风口处出风风速不宜大于5m/s。

  4. 综合管廊的通风口应加设小动物进入的金属格网,网孔净尺寸不应大于10mm×10mm。

  5. 综合管廊的通风设备应符合要求。天然气管道舱风机应采用防爆风机。

  6. 当综合管廊内空气温度高于40℃或需进行线路检修时,应开启排风机,并应满足综合管廊内环境控制的要求。

  7. 综合管廊舱室内发生火灾时,发生火灾的防火分区及相邻分区的通风设备应能够自动关闭。

  8. 综合管廊内应设置事故后机械排烟设施。

  1. 综合管廊供配电系统接线方案、电源供电电压、供电点、供电回路数、容量等应依据综合管廊建设规模、周边电源情况、综合管廊运行管理模式,并经技术经济比较后确定。

  2. 综合管廊的消防设备、监控与报警设备、应急照明设备应按现行国家标准《供配电系统设计规范》GB 50052规定的二级负荷供电。其余用电设备可按三级负荷供电。

  3. 综合管廊附属设备配电系统应符合下列规定:

  1) 综合管廊内的低压配电应采用交流220V/380V系统,系统接地型式为TN-S制,并宜使三相负荷平衡;

  2) 综合管廊应以防火分区作为配电单元,各配单单元电源进线截面应满足该配电单元内设备同时投入使用时的用电需求;

  3) 设备受电端的电压偏差:动力设备不宜超过供电标称电压的±5%,照明设备不应超过+5%、-10%;

  4) 应采取无功功率补偿设备;

  5) 应在各供电单元总进线处设置电能计量测量装置。

  4. 综合管廊内电气设备应符合下列规定:

  1) 电气设备防护等级应适应地下环境的使用要求,应采取防水防潮措施,防护等级不应低于IP54;

  6) 电气设备应安装在便于维护和操作的地方,不应安装在低洼、可能受积水侵入的地方;

  7) 电源总配电箱宜安装在管廊进出口处;

  5. 综合管廊内应设置交流220V/380V带剩余电流动作保护装置的检修插座,插座沿线间距不宜大于60m。检修插座容量不宜小于15kW,安装高度不宜小于0.5m。

  6. 非消防设备的供电电缆、控制电缆应采用阻燃电缆,火灾时需继续工作的消防设备应采用耐火电缆或不燃电缆。

  7. 综合管廊每个分区的人员进出口处宜设置本分区通风、照明的控制开关。

  8. 综合管廊接地应符合下列规定:

  1) 综合管廊内的接地系统应形成环形接地网,接地电阻不应大于1Ω。

  8) 综合管廊的接地网宜采用热镀锌扁钢,且截面面积不应小于40mm×5mm。接地网应采用焊接搭接,不得采用螺栓搭接。

  9) 综合管廊内的金属构件、电缆金属套、金属管道以及电气设备金属外壳均应与接地网连通。

  9. 综合管廊地上建(构)筑物部分的防雷应符合现行国家标准《建筑物防雷设计规范》GB 50057的有关规定;地下部分可不设置直击雷防护措施,但应在配单系统中设置防雷电感应过电压的保护装置,并应在综合管廊内设置等电位联结系统。

  1. 综合管廊内应设正常照明和应急照明,并应符合下列规定:

  1) 综合管廊内人行道上的一般照明的平均照度不应小于15lx,照度不应小于5lx;出入口和设备操作处的部照度可为100lx。监控室一般照明照度不宜小于300lx。

  10) 管廊内疏散应急照明照度不应低于5lx,应急电源持续供电时间不应小于60min。

  11) 监控室备用应急照明照度应达到正常照明照度的要求。

  12) 出入口和各防火分区防火门上方应设置出口标志灯,灯光疏散指示标志应设置在距地坪高度1.0m以下,间距不应大于20m。

  2. 综合管廊照明灯具应符合下列规定:

  1) 灯具应为防触电保护等级I类设备,能触及的可导电部分应与固定线路中的保护(PE)线连接。

  13) 灯具应采取防水防潮措施,防护等级不宜低于IP54,并应具有防外力冲撞的防护措施。

  14) 灯具应采用型光源,并应能启动点亮。

  15) 安装高度低于2.2m的照明灯具应采用24V及以下电压供电。当采用220V电压供电时,应采用触电的措施,并应敷设灯具外壳接地线。

  3. 照明回路导线应采用硬铜导线,截面面积不应小于2.5mm2。线路明敷设时宜采用保护管或线槽穿线方式布线。

  1. 综合管廊监控与报警系统宜分为环境与设备监控系统、防范系统、通信系统、预警与报警系统、地理信息系统和统一管理信息平台等。

  2. 监控与报警系统的组成及其系统架构、系统配置应根据综合管廊建设规模、纳入管线的种类、综合管廊运营维护管理模式等确定。

  3. 监控、报警和联动反馈信号引送至监控中心。

  4. 综合管廊应设置环境与设备监控系统,并应符合下列规定:

  1) 应能对综合管廊内环境参数进行监测与报警。环境参数监测内容应符合下表的规定,含有两类及以上管线的舱室,应按较高要求的管线设置。气体报警设置值应符合国家现行标准《密闭空间作业职业危害防护规范》GBZ/T 205的有关规定。

  环境参数检测内容

  舱室容纳

  管线类别

  给水管道、

  再生水管道

  电力电缆、

  通信电缆

  温度

  湿度

  水位

  O2

  H2S气体

  CH4气体

  注:应监测;宜监测。

  16) 应对通风设备、排水泵、电气设备等进行状态监测和控制;控制设备方式以采用就地手动、就地自动和远程控制。

  17) 应设置与管廊内各类管线配套检测设备、控制执行机构联通的信号传输接口;当管线采用自成体系的监控系统时,应通过标准通信接口接入综合管廊监控与报警系统统一管理平台。

  18) 环境与设备监控系统设备宜采用工业级产品。

  19) H2S、CH4气体气体探测器应设置在管廊内人员出入口和通风口处。

  5. 综合管廊应设置防范系统,并应符合下列规定:

  1) 综合管廊内设备集中安装地点、人员出入口、变配电间和监控中心等场所应设置摄像机;综合管廊内沿线每个防火分区内应至少设置一台摄像机,不分防火分区的舱室,摄像机设置间距不应大于100m。

  20) 综合管廊人员出入口、通风口应设置入侵报警探测装置和声光报警器。

  21) 综合管廊应设置出入口控制装置。

  22) 综合管廊应设置电子巡查管廊系统,并宜采用离线式。

  23) 综合管廊的防范系统应符合现行国家标准《防范工程技术规范》GB 50348、《入侵报警系统工程设计规范》GB 50398、《视频安防监控系统工程设计规范》GB 50395和《出入口控制系统工程设计规范》GB 50396的有关规定。

  6. 综合管廊应设置通信系统,并应符合下列规定:

  1) 应设置固定式通信系统,电话应与监控中心接通,信号应与通信网络联通。综合管廊人员出入口或每一防火分区内应设置通信点;不分防火分区的舱室,通信点设置间距不应大于100m。

  24) 固定式电话与消防电话合用时,应采用独立通信系统。

  25) 舱室内宜设置用于对讲通话的无线信号覆盖系统。

  7. 支线综合管廊含电力电缆的舱室应设置火灾自动报警系统,并应符合下列规定:

  1) 应在电力电缆表层设置线型感温火灾探测器,并应在舱室顶部设置线型光纤感温火灾探测器或感烟火灾探测器;

  26) 应设置防火门监控系统;

  27) 设置火灾探测器的场所应设置手动火灾报警按钮和火灾报警器,手动火灾报警按钮处宜设置电话插孔;

  28) 确认火灾后,防火门监控器应联动关闭常开防火门,消防联动控制器应能联动关闭着火分区及相邻区通风设备、启动自动灭火系统;

  29) 应符合现行国家标准《火灾自动报警系统设计规范》GB 50116的有关规定。

  8. 综合管廊宜设置地理信息系统,并应符合下列规定:

  1) 应具有综合管廊和内部各管线基础数据管理、图档管理、管线拓扑维护、数据离线维护、维修与改造管理、基础数据共享等功能;

  30) 应能为综合管廊报警与监控系统统一管理信息平台提供人机交互界面。

  9. 综合管廊应设置统一管理平台,并应符合下列规定:

  1) 应对监控与报警系统各组成系统进行系统集成,并应具有数据通信、信息采集和综合处理功能;

  31) 应与各管线配套监控系统联通;

  32) 应与各管线单位相关监控平台联通;

  33) 宜与城市市政基础设置地理信息系统联通或预留通信接口;

  34) 应具有性、容错性、易维护性和可扩展性。

  10. 监控与报警系统中的非消防设备的仪表控制电缆、通信线缆应采用阻燃线缆。消防设备的联动控制线缆应采用耐火线缆。

  11. 火灾自动报警系统布线应符合现行国家标准《火灾自动报警系统设计规范》GB 50116的有关规定。

  12. 监控与报警系统主干信息传输网络介质宜采用光缆。

  13. 综合管廊内监控与报警设备防护等级不低于IP65。

  14. 监控与报警设备应由在线式不间断电源供电。

  15. 监控与报警系统的防雷、接地应符合现行国家标准《火灾自动报警系统设计规范》GB 50116、《电子信息系统机房设计规范》GB 50174和《建筑物电子信息系统防雷技术规范》GB 50343的有关规定。

  1. 综合管廊内应设置自动排水系统。

  2. 综合管廊的排水区间长度不宜大于200m。

  3. 综合管廊的低点应设置集水坑及自动水位排水泵。

  4. 综合管廊的底板宜设置排水明渠,并应通过排水明沟将综合管廊内积水汇入集水坑,排水明沟的坡度不应小于0.2%。

  5. 综合管廊的排水应就近接入城市排水系统,并应设置逆止阀。

  6. 综合管廊排除的废水温度不应高于40℃。

  1. 综合管廊的主出入口内应设置综合管廊介绍牌,并应标明综合管廊建设时间、规模、容纳管线。

  2. 纳入综合管廊的管线,应采用符合管线管理单位要求的标识进行区分,并应标明管线属性、规格、产权单位名称、紧急联系电话。标识应设置在醒目位置,间隔距离不应大于100m。

  3. 综合管廊的设备旁边应设置设备铭牌,并应标明设备的名称、基本数据、使用方式及紧急联系电话。

  4. 综合管廊内应设置“禁烟”、“注意碰头”、“注意脚下”、“禁止触摸”、“防坠落”等警示、警告标识。

  5. 综合管廊内部应设置里程标识,交叉口处应设置方向标识。

  6. 人员出入口、逃生口、管线分支口、灭火器材设置处等部位,应设置带编号的标识。

  7. 综合管廊穿越河道时,应在河道两侧醒目位置设置明确的标识。

  综合管廊工程应按乙类建筑物进行抗震设计,并满足国家现行标准的有关规定。抗震设防烈度为6度,设计基本地震加速度值为0.05g。

  消防工作贯彻预防为主、防消结合的方针,坚持专门机关与群众相结合的原则,实行防火责任制。支线综合管廊宜每隔200m划分防火分区,并应进行相应的消防设计。

  综合管廊防洪标准按照广德城区防洪标准进行,近期至2020年抗御30年一遇的洪水,远期至2030年抗御50年一遇的洪水。

  管廊建设与广德县城市总体规划对中心城区建设时序的安排保持统一协调,并考虑与当前主城区开发现状相衔接,本次综合管廊规划建设分期如下:

  1. 近期(2015年~2020年)规划在老城区、城南政务新区、城南片区、高铁新区、城北片区、城西片区以及祠山岗片区新建综合管廊工程。

  2. 远期(2020年~2030年)规划继续完善城南片区、城北片区综合管廊。

  3. 远景(2030年后)根据主城区与开发区以及城东片区的进一步融合,规划完善延伸至城东片区的部分综合管廊。

  1. 近期建设内容:支线管廊12.2km,缆线管廊3.7km。

  2. 远期建设内容:支线管廊22.4km。

  3. 远景建设内容:支线管廊2.5km。

  分期建设内容详细情况可参见分期建设内容表以及综合管廊系统规划图。

  近期投资估算5.2亿元,远期投资估算8.5亿元,远景投资估算1.0亿元。

  1. 健全地下综合管廊建设管理制度、法规和实施细则。

  2. 实行管道入廊和费用分担。

  3. 制定地下综合管廊投融资、财税等支持。

  4. 强化绩效考核和监督机制。

  1. 推动地下综合管廊建设及运行维护技术标准化研究,形成相关技术导则和标准。

  2. 加大职能部门地下综合管廊管理人员培训和业务学,提高相应的管理能力。

  3. 构建地下综合管廊市政管线数字化和智慧化管理体系,实现对管线数据的实时采集、动态监测、信息共享和智能机器人维护。

  附表1  管廊断面详细情况列表

  断面类型

  110KV

  10KV

  给水管

  通信

  强电自用

  通信自用

  内部尺寸

  适用道路

  A

  —

  12

  DN600

  16

  8

  8

  2.8m×2.6m

  万桂山路、太大道(松涛路-天寿路)、爱民路

  B

  —

  12

  DN300

  16

  8

  8

  2.4m

  ×2.4m

  横山路、桐汭西路、天寿路(太大道-光藻路)、南三路、桃州南路、国华路(朱街路-广宜路)、旺塘路

  C

  2

  4

  DN300

  16

  8

  8

  2.4m

  ×2.4m

  国华路(天寿路-长安路)

  D

  —

  12

  DN600

  16

  8

  8

  2.8m

  ×2.6m

  太大道(天寿路-建设路)

  E

  —

  12

  DN300

  16

  8

  8

  2.4m

  ×2.4m

  天寿路(北环路-太大道)

  F-

  —

  12

  无

  16

  —

  —

  2.0m

  ×1.3m

  景贤街、升平南街

  附表2  分期建设内容表

  道路名称

  区域

  路段

  支线管廊

  缆线管廊

  长度(km)

  长度(km)

  规划组团

  道路起终点

  近期

  远期

  远景

  近期

  远期

  远景

  太大道

  城西、城北、老城区、城东、开发区组团

  (松涛路—福林桥)

  2.4

  (福林桥—建设路)

  3.3

  松涛路

  城西组团

  (太大道—清吉路)

  1.4

  爱民路

  城南政务组团

  (清吉路-天寿路)

  3.7

  南三中路

  高铁新城组团

  (规划十路—万桂山南路)

  1.1

  桃州南路

  (光藻路—南四路)

  0.9

  旺塘路

  祠山岗组团

  (北环路—太大道)

  0.9

  桐汭路

  城南、城东组团

  (光藻路-天寿路)

  3.1

  (天寿路—建设路)

  2.5

  国华路

  多个

  (天寿路—长安路)

  1.7

  (朱街路—广宜路)

  1.5

  西关街-景贤街-东关街

  老城组团

  (清吉路—熙春路)

  1.9

  升平南街

  (景贤街—桐汭路)

  1.8

  横山路

  城北、老城区、城南组团

  (太大道-光藻路)

  2.9

  万桂山路

  城北、老城区、城南、高铁新区组团

  (北环路—国华路)

  1.0

  (国华路—太大道)

  0.9

  (太大道—南一东路)

  4.6

  天寿路

  城北、城南组团

  (北环路—太大道)

  2.1

  (太大道—光藻路)

  3.1

  近期合计

  支线综合管廊

  12.2

  缆线管廊

  3.7

  远期合计

  支线综合管廊

  22.4

  缆线管廊

  远景合计

  支线综合管廊

  2.5

  缆线管廊

  合  计

  40.8