荆门高品质入户管道光缆多少钱

名称:荆门高品质入户管道光缆多少钱

供应商:湖北圆志光电科技有限公司

价格:面议

最小起订量:1/米

地址:湖北省孝感市汉川市马口工业园新北路61-4号

手机:13385292666

联系人:吴志刚 (请说在中科商务网上看到)

产品编号:222663064

更新时间:2025-10-16

发布者IP:117.152.191.235

详细说明
产品参数
加工定制:是
型号:多样型号可供选择
品牌:圆志光电科技
类型:优级
是否进口:否
颜色:多样
售后服务:诚信经营,顾客至上
供货方式:可协商
公司行业:通信线缆
产品优势
产品特点: 从事通信光缆,电缆、光电配件、塑料等产品专业生产加工的私营股份有限公司,公司总部设在湖北汉川,湖北圆志光电科技有限公司拥有完整、科学的质量管理体系,自成立一来,本着诚信经营,顾客至上的服务理念,得到了多家通信运营商的信任与支持,并与多家大型企业有长期稳定合作,在行业中具有良好的信誉与口碑。
服务特点: 公司秉承:质量为先、信誉为重、创新为本、服务为诚的企业宗旨。诚意与各界新老朋友:携手精诚合作,共创美好未来。欢迎各界朋友莅临公司参观、指导和业务洽谈。

  荆门高品质入户管道光缆多少钱

  在运输中,电缆产品从出厂到交付用户手中,需要经过一定的运输和储存过程,因此,应注意以下问题:(1)运输前,应检查电缆包装是否完好,电缆合格填写是否规范,电缆端封头是否严密,并牢固地固定在电缆线盘上,电缆线盘侧板是否有松动和脱落等现象,确认无问题后,方可进行运输。

  (2)卸车时,如果没有起重设备,严禁将电缆线盘从运输车上直接推下。因为直接推下,不仅使电缆线盘受到破坏,而且电缆也容易遭受机械损伤。较小型的电缆线盘,可以用木板搭成斜坡,再用绞车或绳子拉住电缆线盘沿斜坡慢慢滚下。

  工控,指的是工业控制自动化,主要利用电气、机械、软件组合的方式实现, 即是工业控制系统,或者是工厂自动化控制。工控指的是工业控制系统的数据、网络和系统。

  随着工业信息化的迅猛发展,德国的“工业4.0”、美国的“再工业化”风潮、“中国制造2025”等国家战略的推出,以及云计算、大数据、人工智能、物联网等新一代信息技术与制造技术的加速融合,工业控制系统由从原始的封闭独立走向开放、由单机走向互联、由自动化走向智能化。但在工业企业获得巨大发展动能的环境背景下,也滋生了大量隐患,工控正面临严峻的挑战 。

  工控系统现状

  1. 工控设备(如PLC、DCS等)以及工控协议本身普遍在设计之初就较少考虑信息方面的问题 。 工控设备主要关注的是功能,系统的稳定性及性方面;互联网通常都通过加密、身份认等方式来协议传输的性,如SSH、HTTPS协议。而工控协议基本都是采用明文方式传输,并且缺少身份认的支持 。

  2. 工控系统在建设之初较少考虑信息问题 ,比如在进行内外网交互的时候,大多只采用了物理隔离的方式进行建设,存在很大的隐患。

  3. 随着互联网的发展,“两化融合”、“互联网+”、“工业4.0”等概念的推进,工控系统与互联网的信息交互变得十分必要且频繁,这就把系统中隐藏的风险、漏洞暴露出来,同时也会引入新的风险 。

  4. 其他问题: 工业控制产品漏洞屡见不鲜 、 缺乏有效的全生命周期管理 、操作人员信息意识低等问题。

  生产场景中常见的问题

  1. 操作站、工程师站等HMI人机界面通常采用windows系统,并且基本不进行补丁更新。

  2. DCS与工程师站、操作站之间进行通信时,基本不进行身份验、规则校验、加密传输、完整性检查等。

  3. 外部运维操作没有审计监管。

  4. 工程师站权限大,有些是通用的工程师站,只要接入生产网络,就可以对控制系统进行运维。

  5. 工控系统普遍存在弱口令问题。

  6. 通信协议的性考虑不足,容易被攻击者利用。的工控通信协议或规约在设计之初一般只考虑通信的实时性和可用性,很少或根本没有考虑性问题,例如缺乏强度的认、加密或授权措施等 。

  7. 策略和管理制度不完善,人员意识不足。目前大多数行业尚未形成完整合理的信息保障制度和流程,对工控系统规划、设计、建设、运维、评估等阶段的信息需求考虑不充分。

  工控与传统的区别

  1、工控的性

  1. 网络通信协议不同,工控大多使用各个厂商的私有协议,比如ModBus协议、西门子的S7协议等。

  2. 系统稳定性要求高:网络造成的误报在一定程度上都等同于攻击。

  3. 系统运行环境不同:工控系统运行环境相对原始和落后,大多使用老版本的WinXP、WIn7等系统,并且一般不打补丁。

  4. 网络结构和行为相对稳定:不能频繁变动调整。

  5. 网络防护要求高:不能通过简单的打补丁来解决问题。

  2、工控的防护目标不同

  对于工控系统来说,防护目标与传统的防护目标同样存在较大差异,具体情况如下:

  3、防护手段不同

  4、网络架构区别

  5、数输区别

  6、运行环境不同

  相关防护标准

  西门子

  罗克韦尔

  博世、倍福、三菱、欧姆龙、施耐德

  其他

  CCS

  计算机集中控制系统。

  控制系统的结构从初的CCS(计算机集中控制系统),到第二代的DCS(分散控制系统),发展到现在流行的FCS(现场总线控制系统)。

  DCS

  分散控制系统/分布式控制系统。

  DCS是分布式控制系统的英文缩写(Distributed Control System),在国内自控行业又称之为集散控制系统。是相对于集中式控制系统而言的一种新型计算机控制系统,它是在集中式控制系统CCS的基础上发展、演变而来的。

  DCS它是一个由过程控制级和过程监控级组成的以通信网络为纽带的多级计算机系统,综合了计算机,通信、显示和控制等4C技术,其基本思想是分散控制、集中操作、分级管理、配置灵活以及组态方便。

  FCS

  现场总线控制系统。

  现场总线(Field bus)是近年来迅速发展起来的一种工业数据总线,它主要解决工业现场的智能化仪器仪表、控制器、执行机构等现场设备间的数字通信以及这些现场控制设备和高级控制系统之间的信息传递问题。由于现场总线简单、、经济实用等一系列突出的优点,因而受到了许多标准团体和计算机厂商的高度重视。

  它是一种工业数据总线,是自动化领域中底层数据通信网络。

  简单说,现场总线就是以数字通信替代了传统4-20mA模拟信号及普通开关量信号的传输,是连接智能现场设备和自动化系统的全数字、双向、多站的通信系统。

  工业领域具有自身的性,因此造就了众多的总线,工业以太网,接口,协议,标准。

  就现场总线而言,目前世界上依然存在着大概40余种,大家比较熟悉的有西门子的ProfiBus、

  PhenixContact公司的InterBus,罗克韦尔的DeviceNet与ControlNet等等。

  由于行业特性的不同,在不同的行业,也存在着不同的总线协议,各种各样的现场总线大于过程自动化、医领域、加工制造、交通运输、国防、航天、农业和楼宇等领域,大概不到十种的总线占有80%左右的市场。

  CAN

  控制器域网络(Controller Area Network, CAN)的简称,是由以研发和生产汽车电子产品著称的德国BOSCH公司开发的,并成为标准(ISO 11898),是上应用广泛的现场总线之一。 在北美和西欧,CAN总线协议已经成为汽车计算机控制系统和嵌入式工业控制域网的标准总线,并且拥有以CAN为底层协议专为大型货车和重工机械车辆设计的J1939协议。

  CAN 的高性能和性已被认同,并被广泛地应用于工业自动化、船舶、医疗设备、工业设备等方面。现场总线是当今自动化领域技术发展的热点之一,被誉为自动化领域的计算机域网。它的出现为分布式控制系统实现各节点之间实时、的数据通信提供了强有力的技术支持。

  DeviceNet

  DeviceNet是一种用在自动化技术的现场总线标准,由美国的Allen-Bradley公司在1994年开发。DeviceNet使用控制器域网络(CAN)为其底层的通讯协定,其应用层有针对不同设备所定义的行规(profile)。主要的应用包括资讯交换、设备及大型控制系统。在美国的市场占有率较高。

  DeviceNet通讯协定是由美国的Allen-Bradley公司(后来被洛克威尔自动化公司合并)所开发,以Bosch公司开发的控制器域网络(CAN)为其通讯协定的基础。DeviceNet移植了来自ControlNet(另一个由Allen-Bradley公司开发的通讯协定)的技术,再配合控制器域网络的使用,因此其成本较传统以RS-485为基础的通讯协定要低,但又可以有较好的强健性。

  为了要推展DeviceNet在世界各地的使用,洛克威尔公司决定将此技术分享给其他厂商。后来DeviceNet通讯协定是由位在美国的独立组织开放DeviceNet厂商协会(ODVA)管理。ODVA维护DeviceNet的规格、也提供一致化测试),确保厂商的产品符合DeviceNet通讯协定的规格。

  后来ODVA将DeviceNet通讯和其他相关的通讯协定整合成通用工业协定(CIP),其中包括以下的通讯协定:

  1. EtherNet/IP(其N为大写,此处的IP不是网际协议,为“Industrial Protocol”的简称)

  2. ControlNet

  3. DeviceNet

  4. CompoNet

  CCL-Link

  CC-Link是Control&Communication Link(控制与通信链路系统)的缩写,在1996年11月,由三菱电机为主导的多家公司推出。在其系统中,可以将控制和信息数据同时以10Mbit/s高速传送至现场网络,具有性能、使用简单、应用广泛、节省成本等优点。其不仅解决了工业现场配线复杂的问题,同时具有的抗噪性能和兼容性。

  CC-Link是一个以设备层为主的网络,同时也可覆盖较高层次的控制层和较低层次的传感层。

  Profibus

  PROFIBUS – DP的DP即Decentralized Periphery。它具有高速低成本,用于设备级控制系统与分散式I/O的通信。它与PROFIBUS-PA(Process Automation )、PROFIBUS-FMS (Fieldbus Message Specification )共同组成了PROFIBUS标准。

  PROFIBUS是一个用在自动化技术的现场总线标准,在1987年由德国西门子公司等十四家公司及五个研究机构所推动,PROFIBUS是程序总线网络(PROcess FIeld BUS)的简称。PROFIBUS和用在工业以太网的PROFINET是二种不同的通信协议。

  1、Profibus-DP

  PROFIBUS–DP协议明确规定了用户数据怎样在总线各站之间传递,但用户数据的含义是在PROFIBUS行规中具体说明的。另外,行规还具体规定了PROFIBUS-DP如何用于应用领域。使用行规可使不同厂商所生产的不同设备互换使用,而工厂操作人员毋须关心两者之间的差异。因为与应用有关的含义在行规中均作了的规定说明。

  Profibus-DP用于现bai场层的高速数送。du在这一级,处理器(如PLC,PC)通过高zhi速串行线同分散dao的现场设备(i/0,驱动器、阀门等)进行通讯。

  PROFIBUS DP(分布式周边,Decentralized Peripherals)用在工厂自动化的应用中,可以由控制器控制许多的传感器及执行器,也可以利用标准或选用的诊断机能得知各模块的状态。

  2、Profibus-PA

  Profibus-PA 适用于Profibus过程自动化。PA 将自动化系统和过程控制系统与压力、温度和液位变送器等现场设备连接起来,并可用来替代4-20mA的模拟技术。

  PROFIBUS PA(过程自动化,Process Automation)应用在过程自动化系统中,由过程控制系统监控量测设备控制,是本质的通信协议,可适用于防爆区域(工业防爆危险区分类中的Ex-zone 0及Ex-zone 1)。其物理层(缆线)匹配IEC 61158-2,允许由通信缆线提供电源给现场设备,即使在有故障时也可限制电流量,避免制造可能导致爆炸的情形。因为使用网络供电,一个PROFIBUS PA网络所能连接的设备数量也就受到限制。

  PROFIBUS PA的通信速率为31.25 kbit/s。PROFIBUS PA使用的通信协议和PROFIBUS DP相同,只要有转换设备就可以和PROFIBUS DP网络连接,由速率较快的PROFIBUS DP作为网络主干,将信号传递给控制器。在一些需要同时处理自动化及过程控制的应用中就可以同时使用PROFIBUS DP及PROFIBUS PA。

  3、Profibus-FMS

  Profibus-FMS的设计旨在解决车间监控级通信任务,提供大量的通信服务。可编程序控制器

  (如如PLC,PC机等)之间需要比现场层更大量的数送,用以完成中等传输速度进行的循环与非循环的通信服务,但通信的实时性要求低于现场层。

  1、EtherNet/IP

  工业以太网协议 (Ethernet/IP) 是由ODVA所开发并得到了罗克韦尔自动化的强大支持。它使用已用于ControlNet和DeviceNet的控制和信息协议 (CIP) 为应用层协议。

  EtherNet/IP指的是"以太网工业协议"(Ethernet Industrial Protocol)。它定义了一个开放的工业标准,将传统的以太网与工业协议相结合。

  该标准是由控制网络(CI, ControlNet International)和开放设备网络供应商协会 (ODVA)在工业以太网协会 (IEA, Industrial Ethernet Association)的协助下联合开发的,并于2000年3月推出。EtherNet/IP是基于TCP/IP系列协议,因此采用以原有的形式OSI层模型中较低的4层。标准的以太网通信模块,如PC接口卡、电缆、连接器、集线器和开关与 EtherNet/IP 一起使用。

  CIP提供了一系列标准的服务,提供“隐式”和“显示”方式对网络设备中的数据进行访问和控制。 CIP数据包在通过以太网发送前经过封装,并根据请求服务类型而赋予一个报文头。这个报文头指示了发送数据到响应服务的重要性。通过以太网传输的CIP数据包具有的以太网报文头,一个IP头、一个TCP头和封装头。封装头包括了控制命令、格式和状态信息、同步信息等。这允许CIP数据包通过TCP或UDP传输并能够由接收方解包。相对于DeviceNet或ControlNet,这种封装的缺点是协议的效率比较低。以太网的报文头可能比数据本身还要长,从而造成网络负担过重。因此,EtherNet/IP更适用于发送大块的数据 ( 如程序 ) ,而不是DeviceNet和ControlNet更擅长的模拟或数字的I/O数据。

  EtherNet Industry Protocol是适合工业环境应用的协议体系。它是基于控制与信息协议CIP(Control and Informal/on Protoco1)的网络,是一种是面向对象的协议,能够网络上隐式的实时I/O信息和显式信息(包括用于组态参数设置、诊断等)的有效传输。

  EtherNet/IP采用标准的EtherNet和TCP/IP技术来传送CIP通信包,通用且开放的应用层协议CIP加上已经被广泛使用的EtherNet和TCP/IP协议,就构成EtherNet/IP协议的体系结构。

  2、EtherCAT

  EtherCAT(以太网控制自动化技术)是一个开放架构,以以太网为基础的现场总线系统,其名称的CAT为控制自动化技术(Control Automation Technology)字首的缩写。EtherCAT是确定性的工业以太网,早是由德国的Beckhoff公司研发。

  自动化对通讯一般会要求较短的资料更新时间(或称为周期时间)、资料同步时的通讯抖动量低,而且硬件的成本要低,EtherCAT开发的目的就是让以太网可以运用在自动化应用中。

  一般工业通讯的网络各节点传送的资料长度不长,多半都比以太网帧的小长度要小。而每个节点每次更新资料都要送出一个帧,造成带宽的低利用率,网络的整体性能也随之下降。EtherCAT利用一种称为“飞速传输”(processing on the fly)的技术改善以上的问题。

  在EtherCAT网络中,当资料帧通过EtherCAT节点时,节点会复制资料,再传送到下一个节点,同时识别对应此节点的资料,则会进行对应的处理,若节点需要送出资料,也会在传送到下一个节点的资料中插入要送出的资料。每个节点接收及传送资料的时间少于1微秒,一般而言只用一个帧的资料就可以供的网络上的节点传送及接收资料。

  3、HSE

  HSE(高速以太网)连接主机、I/O子系统、网关和现场设备,运行速度为100 Mbps。基金会现场总线协议Fieldbus已经作为IEC 61804中的现场总线标准。

  4、Profinet

  PROFINET由PROFIBUS组织(PROFIBUS International,PI)推出,是新一代基于工业以太网技术的自动化总线标准。

  PROFINET为自动化通信领域提供了一个完整的网络解决方案,囊括了诸如实时以太网、运动控制、分布式自动化、故障以及网络等当前自动化领域的热点话题,并且,作为跨供应商的技术,可以兼容工业以太网和现有的现场总线(如PROFIBUS)技术,保护现有投资。

  5、EPA

  EPA是Ethernet for Plant Automation的缩写,它是Ethernet、TCP/IP等商用计算机通信领域的主流技术直接应用于工业控制现场设备间的通信,并在此基础上,建立的应用于工业现场设备间通信的开放网络通信平台。

  2005年 12月EPA被正式列入现场总线标准IEC 61158(第四版)中的第十四类型,并列为与IEC 61158相配套的实时以太网应用行规标准IEC 61784-2中的第十四应用行规簇(Common Profile Family 14,CPF14)。

  2005年 02月我国自主研发的实时以太网EPA通信协议Real time Ethernet EPA (Ethernet for Plant Automation) 顺利通过IEC各国家委员会的投票,正式成为IEC/PAS 62409文件。

  2005年 01月“2004年度工控及自动化领域十大新闻”评选结果揭晓,“EPA为IEC收录,作为PAS标准予以发布”荣膺十大新闻之列。

  2004年 11月“EPA基于高速以太网技术的现场总线控制设备”荣获第六届上海工业博览会奖。

  2004年 10月EPA实时以太网在第六届中国高新技术成果交易会上广受关注。

  2004年 09月浙大中控EPA实时以太网震撼MICONEX2004――第十五届多国仪器仪表展览会MICONEX2004。

  2004年 05月浙江大学、浙大中控主持制定的《EPA标准》(征求意见稿)通过国家标委会的审核。

  2003年 04月在EPA标准的基础上,课题组开发了基于EPA的分布式网络控制系统原型验系统,并在杭州龙山化工厂的联碱碳化装置上成功试用。

  2003年 01月浙江大学、浙大中控主持制定的《用于工业测量与控制系统的EPA系统结构与通信标准》通过专家评审。

  2003年 01月EPA国家标准起草工作组成立。

  2002年 10月浙大中控“基于以太网的EPA网络通信技术及其控制系统”项目通过了浙江省科技厅组织的技术鉴定。

  2001年 10月由浙江大学牵头,以浙大中控为主,清华大学、大连理工大学、中科院沈阳自动化所、重庆邮电学院、TC124等单位联合承担国家“863”计划CIMS主题重点课题“基于高速以太网技术的现场总线控制设备”,开始制定EPA标准。

  6、PowerLink

  开源实时通信技术Ethernet POWERLINK 是一项在标准以太网介质上,用于解决工业控制及数据采集领域数输实时性的技术。本文介绍它的基本原理、相关特性如冗余、直接交叉通信、拓扑结构、性设计,并定义其物理层与介质等内容。

  POWERLINK=CANopen+Ethernet

  鉴于以太网的蓬勃发展和CANopen在自动化领域里的广阔应用基础,EthernetPOWERLINK 融合了这两项技术的优点和缺点,即拥有了Ethernet的高速、开放性接口,以及CANopen在工业领域良好的SDO 和PDO 数据定义,在某种意义上说POWERLINK就是Ethernet 上的CANopen,物理层、数据链路层使用了Ethernet介质,而应用层则保留了原有的SDO 和PDO对象字典的结构,这样的好处在于:

  - POWERLINK 无需做较多的改动即可实现;

  -保护原有投资的利益;

  -开放性的接口;

  7、Modbus

  Modbus是由Modicon(现为施耐德电气公司的一个品牌)在1979年发明的,是个真正用于工业现场的总线协议。ModBus网络是一个工业通信系统,由带智能终端的可编程序控制器和计算机通过公用线路或部线路连接而成,可应用于各种数据采集和过程监控。

  ModBus网络只有一个主机,通信都由它发出。网络可支持247个之多的远程从属控制器,但实际所支持的从机数要由所用通信设备决定。采用这个系统,各PC可以和中心主机交换信息而不影响各PC执行本身的控制任务。

  Modbus协议定义了一个控制器能认识使用的消息结构,而不管它们是经过何种网络进行通信的。它描述了一个控制器请求访问其它设备的过程,如何回应来自其他设备的请求,以及怎样侦测错误并记录。

  Modbus是采用请求/应答方式的应用层消息协议,方便实现在低级设备和高级设备间通信,它包含三个的协议数据单元:modbus请求、modbus应答以及modbus异常应答。modbus请求中包含功能码和请求。modbus功能码有公共功能码、用户定义功能码和保留功能码三种类型。

  modbus可以采用多种通信方式,如modbus RTU与Modbus ASCII、Modbus TCP、Modbus Plus。

  8、IEC 60870-5-104

  IEC 60870-5-104是电工委员会制定的一个规范,用于适应和引导电力系统调度自动化的发展,规范调度自动化及远动设备的技术性能。IEC 60870-5-104可用于交通行业,利用IEC104规约实现城市轨道交通中变电站与基于城域网的综合监控系统的集成通信是好的一个方法,它既了电力监控系统的开放性,又能很好的满足城市轨道交通系统对电力监控系统信息传输的实时、等要求,又有利于利用标准化的优势带来开发的便捷性。

  9、BACnet

  楼宇自动控制网络数据通讯协议(A Data Communication Protocol for Building Automation and Control Networks)是由美国暖通、空调和制冷工程师协会(ASHRAE )组织的标准项目委员会135P (Stand Project Committee即SPC 135P)历经八年半时间开发的。

  BACnet 协议是为计算机控制采暖、制冷、空调系统和其他建筑物设备系统定义服务和协议,从而使BACnet协议的应用以及建筑物自动控制技术的使用更为简单。

  10、Siemens S7

  Siemens S7属于第7层的协议,用于西门子设备之间进行交换数据,通过TSAP(Transport Service Access Point,传输服务访问点),可加载MPI(Multi Point Interface,多点接口),DP(传输协议,实现控制CPU和分布式I/O之间、循环的数据交换),以太网等不同物理结构总线或网络上,PLC一般可以通过封装好的通讯功能块实现。

  11、DNP3

  DNP3全称是Distributed Network Protocol 3,分布式网络协议3,是一种应用于自动化组件之间的通讯协议,常见于电力、水处理等行业。SCADA可以使用DNP协议与主站、RTU(远程终端设备)、及IED(智能电子设备)进行通讯。

  它比起s7comm大刀阔斧做的协议栈要简单的多,是基于TCP/IP的,只是修改了应用层(但比modbus的应用层要复杂得多),在应用层实现了对传输数据的分片、校验、控制等诸多功能。

  DNP3协议是一个广泛应用于电力系统中子站与主站通讯的协议,因为DNP3协议可以封装在以太网TCP/IP上运行(默认端口为TCP的 20000端口),这样难免就会有暴露在公网的情况,而DNP3协议也比较,其主要应用在电力行业的自动化组件之间的通信,在暴露的数据中肯定不乏一些电力行业的设备以及系统。

  12、PCWorx

  2005年,菲尼克斯电气公司首次推出中文版大型工控软件 PCWORX,这是欧美公司推出的套中文版大型工控软件。该中文版工控软件的推出将大地方便中国用户对于自动化技术的学和使用,代表了欧美公司对中国市场的又一贡献。

  菲尼克斯电气的自动化技术AUTOMATIONWORX 不仅由大量的硬件和支持软件所构成,可以形成各种典型的自动化系统,如单纯的总线系统,具有功能的总线系统,以太网与总线相结合的系统,以及正在推出的网络技术”E网到底”的自动化系统;它还涵盖了 INTERBUS、Ethernet PROFINET、工业无线通讯、光纤以及等技术,PCWORX3.11是菲尼克斯电气公司的协议。

  13、OPC

  OPC(OLE for Process Control,用于过程控制的OLE)是世界上广为应用的信息交换的互操作标准,它具有性、性以及平台独立性。

  工业网络协议总体上可以归类为内部私有网络协议,其协议规约是由厂商根据自己的设备自行规定的,没有统一的协议标准。

  14、OMRON FINS

  欧姆龙是来自日本的电子和自控设备制造商,其中小型PLC在国内市场有较高的市场占有量,有CJ、CM等系列,PLC可以支持Fins,Host link等协议进行通信。支持以太网的欧姆龙PLC CPU、以太网通信模块根据型号的不同,一般都会支持FINS(Factory Interface Network Service)协议,一些模块也会支持EtherNet/IP协议,Omron fins协议使用TCP/UDP的9600端口进行通信,fins协议封装在TCP/UDP上进行通信,需要注意的是TCP模式下组包和UDP模式下在头部上有所差异。具体协议包的构造可以参考欧姆龙官方的协议文档。FINS协议实现了OMRON PLC与上位机以太网通信。

  15、Tridium Niagara Fox

  Tridium是Honeywell旗下独立品牌运作的全资子公司。采用Tridium技术的世界品牌包括:Honeywell,Siemens,JCI,Schneider,Samsung 和IBM等。Tridium创造性的开发了软件框架“Niagara Framework”。基于Niagara框架可以集成、连接各种智能设备和系统,而无需考虑它们的制造厂家和所使用的协议,形成一个统一的平台,实现互联互通互操作,并可以通过互联网基于Web浏览器进行实时控制和管理。另外,基于Niagara框架,客户可以进行二次开发,实现其专有的应用,开发其专有的产品。

  NiagaraAX平台到今天已经整合了不同层级的东西,之前谈论的大多数都是设备,硬件设备是为建筑或者园区提供基础设置的,另外一些包括安防系统、访客管理、能源计费系统、管理服务、设备、设施维护计划,资产管理、设施管理等系统,NiagaraAX可以把这些基础设备和系统相互衔接起来,使用专有的Tridium Niagara Fox协议通信,给客户创造价值。

  16、ProConOs

  ProConOS是德国科维公司(KW-Software GmbH)开发的用于PLC的实时操作系统,ProConOS embedded CLR是新型的开放式标准化PLC运行时系统,符合IEC 61131标准,可执行不同的自动化任务(PLC、PAC、运动控制、CNC、机器人和传感器)。

  通过采用标准的微软中间语言(依据IEC/ISO 23271标准为MSIL/CIL)作为设备接口,可使用C#或IEC 61131标准语言对ProConOS Embedded CLR编程,ProConOS Embedded CLR为客户提供了实时的嵌入式应用。该操作系统使用ProConOs专有的工控协议通讯,服务端口号是20547。

  17、Crimson v3.0

  红狮(Red Lion Controls)控制系统制造公司位于美国的宾西法尼亚州,可以制造多种工业控制产品从定时器和计数器到精密复杂的人机界面,具有的贴片安装和板上芯片的生产能力。红狮工程团队可以提供各种新产品设计,从应用范围很广的标准控制产品到根据客户和OEM的要求而定做的产品。美国红狮控制公司为其交货迅速、良好的客户服务和高质量的技术支持而引以为豪。

  Crimson v3.0 是redlion公司的工控系统配置软件,产品协议成为自动化市场的协议之一,免费的Crimson3.0软件拥有强大的功能,支持拖拉式组态结构,显示,控制,数据记录仪功能,是为了充分发挥MC系列产品的功能而设计开发的。大部分简单的应用程序可以一步步建立,配置相关的通讯协议和数据标签。内置多种串口和以太网口驱动程序选择菜单,可以数秒内将数据下载到MC上,内置各种驱动程序,无需编写代码就可以和各种PLC,PC机和SCADA系统通讯。

  18、MELSEC-Q

  三菱Q系列PLC以太网模块系统默认开放了TCP的5007端口和UDP的5006端口用于与GX软件进行通信,通过对通讯协议的分析,可以实现对该系列PLC设备的识别和发现。

  19、Tcnet

  TCnet是一种网络技术,由电工委员会(IEC)认为标准,并批准作为公共可用规范(PAS)发布。它基于以太网,具有实时性和高性的特点。

  20、Wnet

  WNET (.a. NetBEUI) protocol no longer performs client impersonation.

  In all previous Firebird versions, remote requests via WNET are performed in the context of the client security token. Since the server serves every connection according to its client security credentials, this means that, if the client machine is running some OS user from an NT domain, that user should have appropriate permissions to access the physical database file, UDF libraries, etc., on the server filesystem. This situation is contrary to what is generally regarded as proper for a client-server setup with a protected database.

  工业无线网

  1、IEEE 802.11(a/b/g/n)

  IEEE 802.11是现时无线域网通用的标准,它是由IEEE所定义的无线网络通信工业的标准Wi-Fi——IEEE802.11系列。

  无线域网路的个版本发表于1997年,其中定义了介质访问接入控制层(MAC层)和物理层。物理层定义了工作在 2.4GHz的ISM频段上的两种无线调频方式和一种红外传输的方式,总数输速率设计为2Mbit/s。

  两个设备之间的通信可以自由直接(ad hoc)的方式进行,也可以在基站(Base Station, BS)或者访问点(Access Point,AP)的协调下进行。为了在不同的通讯环境下取得良好的通讯品质,采用 CSMA/CA (Carrier Sense Multi Access/Collision Aviodance)硬件沟通方式。

  1999年加上了两个补充版本: 802.11a定义了一个在5GHz ISM频段上的数输速率可达54Mbit/s的物理层,802.11b定义了一个在2.4GHz的ISM频段上但数输速率高达11Mbit/s的物理层。 2.4GHz的ISM频段为世界上大多数国家通用,因此802.11b得到了为广泛的应用。

  苹果公司把自己开发的802.11标准起名叫 AirPort。1999年工业界成立了Wi-Fi联盟,致力解决符合802.11标准的产品的生产和设备兼容性问题。

  802.11a,1999年,物理层补充(54Mbit/s工作在5GHz) 。

  802.11b,1999年,物理层补充(11Mbit/s工作在2.4GHz) 。

  802.11g,2003年,物理层补充(54Mbit/s工作在2.4GHz) 。

  802.11n,更高传输速率的改善。

  2、Rfieldbus

  Wireless Fieldbus-RFieldbus

  RFieldbus是在现场总线PROFIBUS基础上研制的一种具有传送IP数据包能力的无线实时通讯系统,又称无线现场总线。

  3、ZigBee

  ZigBee,也称紫蜂,是一种低速短距离传输的无线网上协议,底层是采用IEEE 802.15.4标准规范的媒体访问层与物理层。主要低速、低耗电、低成本、支持大量网上节点、支持多种网上拓扑、低复杂度、、、。

  工业协议常用端口

  协议名称端口号牵头组织应用行业MODBUS502Modicon公司的,被施耐德电气仪器仪表、RTU、过程自动化领域等EtherNet/IP44818罗克韦尔自动化公司过程自动化领域BACnet47808ISO、ANSI、ASHRAE智能楼宇控制S7102西门子通信协议过程自动化领域DNP320000IEEE水处理FINS9600欧姆龙公司过程自动化领域GE SRTP18245美国通用电器,发那科过程自动化领域MELSEC-Q5006/5007日本三菱过程自动化领域Tridium-Niagara Fox协议1911Tridium公司智能建筑、基础设置管理、安防等行业Crimson V3789redlion公司工控系统配置软件CIP44818ODVA过程自动化IEC-60870-5-1042400/2404电工委员会(IEC)电力行业Moxa Npot4800台湾MOXA公司过程自动化PCWorx1962菲尼克斯过程自动化IEC6185048571电工委员会(IEC)电力行业OPC DA动态端口OPC组织数据采集OPC UA4840OPC组织数据采集EGD18246GE,发那科过程自动CC-link串口三菱电机过程自动化EtherCAT34980Beckhoff过程自动化CANopen串口CiA组织过程自动化ControlNet44818罗克韦尔过程自动化Deveicenet串口罗克韦尔过程自动化Powerlink无贝加莱、Kuka、 Hirschmann过程自动化Host link串口欧姆龙公司过程自动化Profinet34962、34963、34964西门子过程自动化PROFIBUS串口西门子过程自动化AS-i串口西门子过程自动化IO-Link串口西门子过程自动化SERCOSIII无IEC1491过程自动化HSE1089、1090、1091IEC 61804过程自动化ROC Plus4000EmersonDCSFoxboro DCS FoxApi55555FoxboroDCSFoxboro DCS AIMAPI45678FoxboroDCSFoxboro DCS Informix1541FoxboroDCSLonWorks2540、2541美国埃施朗公司半导体制造、照明控制系统、能源等行业ICCP(IEC 60870-6/TASE.2)102IEC输电、配电和不同区域的发电厂DyNet串口飞利浦PLCDF1串口Allen-BradleyPLCProConOs20547德国科维高性能PLC运行时间引擎EPA35004浙大中控化工领域MELSEC-Q5007三菱命令处理程序

  在工业控制系统ICS中使用的通信协议在不同的行业、不同的区域和不同的供应商之间差别很大。

  1、电力行业

  1.1 IEC 60870-5

  IEC 60870-5可能是上的变电站自动化协议。在美国,它在功能同于DNP3,它使用IEC 60870-5的部分来为数据链路层提供基础。已经制定了许多配套标准,包括以下内容:

  IEC 60870-5-101:用于远程控制、远程保护相关的电力系统,是具有监视、控制功能的通信传输协议IEC 60870-5-103:实现保护装置和变电站控制系统设备之间互操作性的传输协议IEC 60870-5-104:是IEC 60870-5-101的扩展,包括传输、网络、链路和物理层服务的变化,以及与TCP/IP和其他传输(ISDN、X.25帧中继等)连接的套件IEC 60870-5典型的通信介质包括以太网和串行,典型端口为2404/UDP和2404/TCP。

  1.2 分布式网络协议3.0(DNP3)

  DNP3广泛应用于北美地区,主要用于替代IEC 60870-5系列协议。它是在20世纪90年代早期开发的一种串行协议,但现在也存在UDP/IP和TCP/IP变体版本。DNP3和IEC 60870-5之间存在许多相似之处,因为IEC 60870-5开发委员会的几个成员在开发过程中离开,创建了后来的DNP3。因此,DNP3和IEC 60870-5的数据链路层相似,但协议的上层差异性较大。

  DNP3主要应用于北美电力行业,但该协议也渗透到自来水和污水处理行业。根据牛顿-埃文斯研究公司调查,2008年北美电力公司中有一半以上使用DNP3协议的UDP/IP或TCP/IP变体版本。

  目前,研究者正在开发DNP3的扩展,预计这些扩展将提供链接加密和密钥管理服务。

  DNP3协议典型的通信介质包括以太网和串行连接,DNP3通常使用端口有20000/UDP,20000/TCP,19999/UDP和19999/TCP。

  1.3 基金会现场总线(FOUNDATION Fieldbus)

  基金会现场总线协议是不同工业进程中的主要现场总线协议。它主要用于过程/工厂自动化,已部署在各种装置中,包括发电厂/发电机控制和半导体制造的控制。Fieldbus的通信介质包括双绞线和光纤。典型端口包括1089/UDP,1089/TCP,1090/UDP,1090/TCP,1091/UDP和1091/TCP。

  现场总线基金会网站上提供了基金会现场总线协议支持设备的公共列表。现场总线基金会的成员包括350多家领先的控制系统和仪表供应商以及一些用户。

  1.4 控制中心间通信协议(ICCP)

  ICCP(IEC 60870-6/TASE.2)用于控制中心之间的通信,主要用于电力行业。在美国,ICCP网络经常被用于公用事业公司的协同 -- 通常是具有传输业务的公用事业,如输电、配电和不同区域的发电厂,将这些不同区域的服务商连接在一起,可以以协调不同地区之间的电力输入和输出。ICCP通常使用端口102/TCP。

  1.5 Modbus协议

  由于其使用简单、可免费下载以及免版权费部署等特性,Modbus成为领域中的控制协议。

  PLC和继电器等智能设备通常使用Modbus协议或者其变体与远程RTU等简单设备进行通信。除Modbus标准协议外,Modbus +是普遍的一个变体。Modbus网站上提供了Modbus成员列表(属于Modbus开发人员组的公司和开发人员)。此列表包括各个成员以及每个成员制造的产品的简要说明。还提供了Modbus供应商列表、Modbus设备列表以及提供Modbus系统集成服务的公司列表。

  现在有许多Modbus变体,Modbus RTU是一种开放标准、允许通过串行连接进行通信的二进制编码协议。Modbus ASCII也是一种开放标准、支持串行连接的ASCII编码协议。Modbus/TCP是一种开放标准、它将Modbus RTU有效负载封装在TCP数据包中,并对功能码进行了一些限制。Modbus/UDP因供应商而异,但常见的是通过UDP传输Modbus/TCP。Modbus +是一种扩展的高速(1Mbps)版本,它使用令牌传递技术进行传输介质访问控制,但Modbus +是Modicon的专有协议。Enron(或Daniels)Modbus是标准的Modbus协议,具有供应商扩展,将32位值视为一个寄存器而不是两个。JBus是具有较小的寻址变化的Modbus协议版本。

  Modbus典型的通信介质包括以太网和串口(RS485双线常见)。Modbus通常在端口502/TCP上通信。

  2 石油和天然气行业

  石油和天然气行业没有明显的主流协议。该行业使用各种协议,如DNP3,IEC 60870-5和Modbus。节更深入地讨论了这些协议。多种现场总线协议,如基金会现场总线协议Feildbus,也能在许多石油和天然气设施中也能看到。

  石油和天然气行业的通信经常通过无线进行传输,通过RTU和传感器为PLC提供流量和压力数据,PLC运行保护系统和油井控制系统等。

  2.1 DNP3和IEC 60870-5

  关于DNP3和IEC 60870-5的讨论在5.2节的电力行业部分中已经给出。在Triangle Microworks Inc.网站上,列出了使用DNP3和IEC 60870-5的石油和天然气公司的清单,在该网站还可以找到关于协议的白皮书。

  典型的通信介质包括以太网和串行连接。DNP3通常使用端口20000/UDP,20000/TCP,19999/UDP和19999/TCP,而IEC 60870-5通常使用2404/UDP和2404/TCP。

  2.2 Modbus协议

  如第5.2节中对Modbus的描述所述,Modbus是石油和天然气领域的流行控制协议。另外基金会现场总线协议在石化领域也很受欢迎。

  典型的通信介质包括以太网和串口(RS485双线常见)。Modbus通常在端口502/TCP上运行。

  3 水处理行业

  3.1 DNP3协议

  如第5.2节中对DNP3的描述所述,该协议在水处理领域也很受欢迎。典型的通信介质包括以太网和串行连接。DNP3通常使用端口20000/UDP,20000/TCP,19999/UDP和19999/TCP。

  3.2 Modbus协议

  在上文关于电力行业部分,对Modbus的描述中提到过,Modbus是水处理行业中比较流行控制协议。典型的通信介质包括以太网和串行总线。Modbus通常在端口502/TCP上运行。

  4 建筑自动化领域

  在建筑自动化领域,LonWorks(也称为LonTalk或ANSI/CEA 709.1B)是主流的通信协议,其次是DyNet,还有一些其他通信协议。典型的通信介质包括电力线载波、双绞线/以太网、光纤和RF。主要通信端口包括2540/UDP,2540/TCP,2541/UDP和2541/TCP。

  4.1 LonWorks (LonTalk, 或ANSI/CEA 709.1-B)

  美国埃施朗公司(Echelon)基于LonWorks协议了一个网络平台,也叫做LonWorks平台。该平台广泛应用于许多行业,包括半导体制造、照明控制系统、能源管理系统、HVAC系统、安防系统、家庭自动化、消费电器控制、公共街道照明/监控/控制和加油站控制。LonWorks的典型应用是用作恒温器,通过LonTalk协议与PC和PLC通信,来协调建筑物内部的空调和通风系统(HVAC)。

  ISO和IEC已授予LonWorks平台兼容性标准号ISO/IEC 14908-1,-2,-3和-4(ANSI/CEA-852)。LonWorks还构成了IEEE 1473-L(列车网络,Locomotive networking)以及其他几个特定的应用领域的应用。中国已批准LonWorks作为国家控制标准(GB/Z 20177.1-2006)并作为建筑和智能社区标准(GB/T 20299.4-2006)。欧洲设备制造商委员会也已将LonWorks作为其家用电器控制和监控 - 应用互通规范标准的一部分。

  4.2 DyNet

  DyNet是由Dynalite(现为飞利浦电子公司)开发的专有协议。DyNet设备包括自己的可编程控制器,并通过点对点模型通信。

  DyNet典型的通信介质包括RS-485串行总线、RS-232串行总线、以太网和红外。

  4.3 其他协议

  还有许多协议用于建筑自动化系统。的包括INSTEON,X10,ZigBee,X-Wave和KNX/Konnex。

  5 过程自动化(制造业)领域

  过程自动化领域的以现场总线协议为主,包括PROFINET、基金会现场总线协议Fieldbus和通用工业协议CIP及其衍生协议。IEC 61158和IEC 61784包含每种主要现场总线协议及其变体的详细说明。

  5.1 DF1协议

  DF1是ANSI X3.28协议中D1和F1部分中定义的串行通信协议。该协议初由Allen-Bradley(现为罗克韦尔自动化公司)开发,通常用作向Allen-Bradley PLC传输可编程控制器通信命令(PCCC)。

  5.2 基金会现场总线协议Fieldbus

  基金会现场总线协议Fieldbus适用于基本和高级调节控制的应用,以及与这些功能相关的大部分离散控制场景。基金会现场总线协议Fieldbus有两种不同速度和不同传输媒介运行的实现方式:H1是常见的实现方式,通常连接现场设备并以31.25Kbps运行; HSE(高速以太网)连接主机、I/O子系统、网关和现场设备,运行速度为100 Mbps。基金会现场总线协议Fieldbus已经作为IEC 61804中的现场总线标准。

  5.3 过程现场总线协议Profibus

  Profibus由德国教育和研究部门BMBF开发。它有两种变体,其中较常见的变体是分散式外围设备(DP)协议,通常用于集中控制器与传感器/执行器的通信;另一种变体是过程自动化(PA)协议,用于过程控制系统PCS监控测量设备。PA变体设计并用于爆炸性或危险区域,并使用符合IEC 61158-2的物理传输链路。PA和DP相同的基本相同的通信规约,但PA的运行速度为31.25Kpbs。DP网络和PA网络可以通过一个耦合器连接起来,DP用作骨干网。Profibus现场总线协议包含在IEC 61158和IEC 61784标准中。

  5.4 Profinet IO协议

  PROFINET概念具有两个视角:PROFINET CBA和PROFINET IO,两者都可以在同一总线系统上进行通信。它们可以单独操作或组合使用,PROFINET IO子系统可以从另一个角度作为PROFINET CBA系统。

  POFINET IO开发用于与分布式外围设备的实时(RT)和等时(IRT)通信,实时通信RT的周期时间为10毫秒,等时通信IRT驱动循环时间为1ms或更短。PROFINET CBA适用于通过TCP/IP进行基于组件的通信,以及用于模块化系统工程中的实时通信。两种通信通信模式可以并行使用。PROFINET CBA的反应时间范围为100ms。

  PROFINET现场总线协议包含在IEC 61158和IEC 61784标准中。

  5.5 CC-Link协议

  CC-Link是由日本三菱电机开发,并被其他日本供应商广泛采用的一种现场总线协议。目前,使用CC-Link设备总数超过600万台,涵盖1000多种不同的设备。使用CC-Link协议的工业以太网可以很方便的跟传统的IT网络进行集成。

  有四种CC-Link格式:

  ① CC-Link。

  ② CC-Link LT(用于低通信需求设备的轻量化版本)。

  ③ CC-Link Safety(高性版本,符合IEC 61508 SIL3和ISO13849-1 Cat 4标准)。

  ④ CC-Link IE(工业以太网版)典型的CC-Link通信介质包括双绞线和光纤,CC-Link合作伙伴协会提供合作伙伴名单。

  5.6 通用工业协议(CIP)

  通用工业协议(CIP)尝试为整个制造业提供统一的通信架构。CIP是EtherNet/IP、DeviceNet、CompoNet和ControlNet的等协议的统一应用层协议。CIP包含一整套消息和服务,用于收集制造自动化应用程序的控制、、同步、运动、配置等信息。该协议由Open DeviceNet Vendors Association (ODVA)管理。

  5.7 ControlNet协议

  ControlNet是由Allen-Bradley开发的一种CIP实现。ControlNet具有支持冗余链路电缆的内置功能,通信都经过严格的安排从而具有高度确定性。

  ControlNet物理层是使用BNC连接器的RG-6同轴电缆或光纤。ControlNet使用曼彻斯特编码,总线速度为5 Mbps。链路层的运行周期称为网络更新时间(NUT),每个NUT具有两个阶段,阶段预留给的常规流量传输,以传输机会,第二阶段用于没有的计划外流量传输。ControlNet的大帧大小为510字节。

  5.8 DeviceNet协议

  DeviceNet是由Allen-Bradley开发的另一个CIP实现版本。DeviceNet位于控制器区域网络(CAN)物理层,并采用ControlNet技术,与传统的基于RS-485的协议相比,它的成本更低和健壮更高。

  DeviceNet的波特率分别为125 Kbps、250 Kbps和500 Kbps,主干线长度与总线速度成反比,即分别为500米、250米和125米。大多数部署使用主/从模式,但也可以使用点对点传输。多个主设备在单个逻辑网络上共存。DeviceNet经过精心设计,可以在复杂的电磁环境下稳定运行。

  5.9 EtherNet/IP协议

  EtherNet/IP是由罗克韦尔自动化开发的CIP协议的实现版本。协议的应用层是CIP。EtherNet/IP是在标准TCP/IP堆栈上构建的应用层协议,它将网络上的设备统一视为一系列“对象”,底层利用现有的以太网基础设施(无论速度如何)。整个EtherNet/IP堆栈可以在通用处理器上通过软件实现,无需ASIC或现场可编程门阵列(FPGA)。EtherNet/IP利用44818/TCP进行显式消息传递和2222/UDP用于隐式消息传递。

  5.10 EtherCAT协议

  EtherCAT(Ethernet for Control Automation Technology)是用于控制自动化技术的以太网协议,其Ethertype为0x88A4,通过将帧数据插入UDP数据包可以实现IP可路由。EtherCAT没有采用每个周期每个节点处理一个帧(更新时间)的模式,而是使用“即时处理”模式。EtherCAT不是简单的从设备接收以太网帧,而是在数据报通过设备时读取发往它们的数据,并在每个节点处作为过程数据进行解释和复制,类似地,在数据报通过时插入输入数据。许多节点可以用一帧寻址。

  EtherCAT网络可以通过网关与CANopen,DeviceNet,PROFIBUS和其他协议集成。EtherCAT技术组是用户和供应商组建的组织; 截至2009年8月,它由来自47个国家的1100多家公司组成。EtherCAT作为现场总线协议包含在IEC 61158和IEC 61784标准中。EtherCAT使用端口34980/UDP和34980/TCP在以太网LAN之间进行路由。

  5.11 EGD协议(Ethernet Global Data)

  以太网全数据(EGD)协议是一种通信机制,它使一个CPU能够以定期调度的周期速率与一个或多个其他CPU共享其内部存储器的一部分。某些GE发那科的PLC使用EGD协议。

  5.12 FINS协议

  FINS是欧姆龙(一家日本控制公司)开发的协议,并在其新的PLC中使用。它通常使用端口9600/UDP在支持IP的系统上运行。

  5.13 Host Link协议

  Host Link是欧姆龙为其旧PLC系列开发的协议,但是,许多新的欧姆龙PLC仍然可以使用HostLink协议进行通信。它是基于ASCII码的RS-232总线协议。

  5.14 SERCOS协议(Serial Real-Time Communication System)

  SERCOS具有严格的实时要求,尤其适用于运动控制,例如金属切割和成型、机械装配、包装、机器人、印刷和材料处理等领域。该协议由SERCOS International管理,目前的版本是SERCOS III。SERCOS在IEC 61158和IEC 61784标准中有详细的定义。

  5.15 SRTP协议(Service Request Transfer Protocol)

  SRTP是一种用于通过PC向PLC进行命令和数据通信的协议。它被GE发那科PLC用作应用层通信协议。

  5.16 Sinec H1协议

  Sinec H1是西门子开发的传输层协议,不同的应用层协议可以在其上运行。该协议的大带宽特性使其成为大数据量传输的理想选择。

  弱电布线施工是指在建筑物内进行的电缆、光缆等低电压信号线路的安装工作。在如今的智能化时代,弱电布线施工越来越受到重视。本文将全面解析弱电布线施工的注意事项和实用技巧,帮助大家地进行弱电布线施工。

  (1)缆线的型号、规格应与设计规定相符.电缆线在各种环境中的敷设方式、布放问距均应符合设计要求。

  (2)缆线的布放应自然平直,不得产生扭绞、打圈、接头等现象,应不受外力的挤压和损伤。

  (3)缆线两端应贴有标签,应标明编号,标签书写应清晰正确标签应选用不易损坏的材料缆线应有余量,以适应终接、检测和变更对绞电缆预留长度:在工作区宜为3-6

  (4)缆线的弯曲半径应符合下列规定:

  1)非屏蔽4对对绞电缆的弯曲半径应至少为电缆外径的4倍。

  2)屏蔽4对对绞电缆的弯曲半径应至少为电缆外径的8倍。

  3)主干对绞电缆的弯曲半径应至少为电缆外径的10倍

  4)2芯或4芯水平光缆的弯曲半径应大于25mm;其他芯数的水平光缆、主干光缆和室外光缆的弯曲半径应至少为光缆外径的1倍。

  (5)缆线间的小净距应符合设计要求:

  1)电源线、综合布线系统缆线应分隔布放,并应符合表3-6的规定

  表3-6对绞电缆与电力电缆小净距

  条 件

  小净距/mm

  380V, 5kVA

  对绞电缆与电力电缆平行敷设

  130

  300

  600

  有-方在:接地的金属糟道或钢管中

  70

  150

  300

  双方均在接地的金属槽道或钢管中

  10

  80

  150

  注:1、当380V电力电缆特种光纤的前沿发展

  多芯光纤(7-19芯)实现空分复用,芯间串扰<-30dB。氟化物光纤红外传输范围扩展至4.5μm,用于激光武器能量传输。光子晶体光纤非线性系数达100W^-1km^-1,是普通光纤1000倍。稀土掺杂光纤(如Er/Yb)功率转换效率>80%,用于10kW级光纤激光器。生物相容性光纤(直径125μm)可植入体内进行光遗传学调控。超低损耗硅基光纤(0.142dB/km)支撑跨洋通信系统升级。

  1、GB200使用铜缆线背板引关注,铜互联在AI Scaleup场景成为通信方式性价比解。在2024 GTC大会上发布GB200芯片并推出基于GB200的NVL72机柜,高速铜缆互联主要应用场景正是B200芯片与NVLink Switch的互联。NVL72主要通过GPU背板连接器到线背板再到交换芯片的跳线完成互联,而NVL36*2由于要实现两台NVL36的互联,将需要额外的162根1.6T ACC电缆互联。除英伟达外,dojo、TPU均使用了定制铜缆或DAC&AEC作为短距互联方案。在AI Scaleup互联域,铜缆是机柜内、机柜间短距互联的性价比佳方案。

  2、我们预计2025年由GB200带来的高速铜缆新增市场近60亿美元,高速铜缆使用场景不断延伸。在GTC2024上介绍,NVL72使用铜缆互联较光模块节省了6倍成本。NVL72需要5184根高速差分对铜缆,该铜缆需要从compute tray的背板连接到Switch tray的背板,再从Switch tray的背板连接到NVLINK Switch芯片,我们测算NVL72机柜的高速铜缆价值量合计11.7万美金,而NVL36价值量合计10.4万美金,根据Trendforce,2025年GB200机柜出货有望达到6万台,则2025年GB200机柜铜缆新增市场达到约64亿美元。

  3、高速铜互联组件竞争格集中,上游线材和连接器具有壁垒。GB200以组件形式销售背板线模组、近芯片跳线以及外部IO线,高速线材和连接器作为重要原材料可能选择外采或代工方式。在GB200机柜里,背板线模组cartridge、NVSwitch OverPass&Densilink、PCIE、ACC分别对应的是高速铜缆背板互联、芯片飞线、服务器内部线、外部IO线场景。高速铜缆线材需要材料处理、缘、编织、组件组装等工序,其制造具有设备和工艺壁垒。高速连接器技术、专利壁垒高,在25Gbps以上高速连接器领域,具有一家独大、泰科、莫仕两强相随面。由于高速铜互连组件话语权主要集中在连接器领域,连接器相对的竞争格基本顺延到组件市场。

  4、聚焦上游配套,关注国产算力方案。由于与英伟达的联合研发以及对核心专利的掌握,GB200高速铜连接价值量前期或主要集中于以为代表的连接器巨头厂商。国内对于224G高速铜线、IO CAGE等高速产品配套需求将增加,对于中低端产品线产能原因外包需求也将外溢。另外,高速铜连接市场有望从英伟达引领扩散到海外UALINK和国产算力配套,铜连接有望“”光模块行情,实现2025年需求爆发式增长。

  建议关注:拥有高速铜连接全套解决方案的、高速线材领军者、专注同轴电缆产品的、聚焦服务器内部线的、通讯汽车双轮驱动的、国内数据通信组件和布线领先企业、高速背板连接器国产替代先锋、数据中心高速组件成长的等。

  风险提示:对于高速铜缆价值量预期过于乐观风险,GB200机柜量产进度延后导致相关公司订单落地和业绩释放不及预期,相关公司设备或良率瓶颈导致产能释放不及预期风险,原材料成本上涨、良率低导致毛利率不及预期风险,竞争格恶化风险,技术路线不确定风险。

  【GB200带动高速铜连接爆发,AI Scaleup高速铜缆性价比】

  GB200使用铜缆线背板互联引关注,高速铜互联在AI柜内场景已具有成熟经验

  GB200 NVL72通过NVLINK5将72个B200组成一个“GPU”。英伟达在2024GTC大会上发布GB200芯片以及NVL72机柜,通过高速铜缆互联形如一颗GPU。具体来看,每个NVL72机柜由18个compute tray和9个NVLINK Switch tray组成,每个compute tray包括2颗GB200芯片,每颗GB200芯片由2颗B200 GPU和一颗Grace CPU通过NVLINK C2C(单向450GB/s)连接而成。而每台NVLINK Switch则由两颗NVLink Switch4芯片组成,交换带宽为28.8Tb/s*2。每颗B200芯片通过NVLink5共900GB/s单向带宽(共36*224G SERDES)分别连接到18颗NVLink Switch4,而高速铜缆互联主要应用的场景正是B200芯片与NVLink Switch的互联。此外,每颗B200均配置了CX7或CX8网卡,通过400Gb或800Gb IB网络scaleout互联,对应每台compute tray 2个OSFP 800G或1.6T端口。

  图1:GB200 NVL72系统架构

  资料来源:Semianalysis,研究所

  NVL72的高速铜连接架构设计。NVL72使用一层NVSwitch交换架构连接了72颗B200,这主要通过背板连接器到线背板再到交换芯片的跳线完成。根据Semianalysis的分析,每个Blackwell GPU都连接到一个Paladin HD 224G连接器,每个连接器有72个差分对(对应每颗B200 900GB/s*8*2的NVLINK收发带宽),连接到背板Paladin连接器后接下来使用了SkewClear EXD Gen2电缆背板连接到Switch tray的Paladin HD背板连接器(每个连接器有144个差分对),再通过OverPass跳线电缆连接到NVSwitch芯片。

  图2:GB200 NVL72 NVLINK互联网络架构

  资料来源:Semianalysis,研究所

  图3:NVL72 overpass和背板连接示意图

  资料来源:Semianalysis,研究所

  因此实际上GB200 NVL72使用了定制的高密度背板连接器和线背板模组来解决72颗B200与18颗NVLink Switch的机柜内互联,而为了解决Switch tray上PCB密集高频信号的串扰问题,还使用了OverPass近芯片跳线连接到背板。

  图4:NVL72机柜背部使用了密集的线背板互联

  资料来源:servethehome,研究所

  图5:NVL72 NVSwitch Tray使用了OverPass跳线(图中蓝线)

  资料来源:servethehome,研究所

  NVL36*2的高速铜连接架构设计。对于NVL36*2的定位是满足某些机柜功率、风冷散热有限制条件的客户需求,NVL36机柜的大区别一是同样配置了9个Switch tray(18颗NVLink Switch4芯片),相当于交换容量翻倍,二是是使用了可扩展的NVLINK Switch tray,两台NVL36机柜之间通过短距ACC铜缆互联。对于线背板和交换芯片跳线,NVL36采用了与NVL72相同的设计,相应的由于GPU数量减半,线背板和OverPass使用的电缆数量也近乎减半。但由于要实现两台NVL36的互联,每套NVL36*2系统将需要额外的162根1.6T ACC电缆互联,而为了将NVLINK Switch一半的带宽连接到前面板,英伟达还使用了的Densilink跳线产品,因此NVL36*2整体上跳线的用量是较NVL72基本相当的。

  图6:GB200 NVL36互联网络架构

  资料来源:Semianalysis,研究所

  图7:两个NVL36机柜通过柜外线ACC连接

  资料来源:Semianalysis,研究所

  除外,高速铜互联在AI短距离场景已有成熟经验,dojo/等均使用定制铜缆或DAC&AEC作为短距互联方案。以谷歌为例,其TPUv4服务器设计TPU和CPU板卡是分开的,使用PCIE外部线进行连接而在TPU互联域,谷歌使用的是3D torus网络架构,每颗TPUv4具有6*50GB/s ICI带宽,其中2条ICI链路在tray内通过PCB互联,3条链路使用400G DAC铜缆在机柜内与其他TPU tray互联,剩余1条链路通过400G FR4光模块连接OCS光交换机。自研芯片dojo机柜的设计则更加独树一帜,其基本芯片单元为D1芯片,25个D1芯片组成一个Training Tile,12个Training Tile组成一个服务器机柜,算力达109PFlops。为实现Training Tile之间的高速互联,特斯拉定制了通信协议,每片Tile的每一边通过10个900GB/s定制连接器和线缆组件实现9TB/s的超大带宽。

  图8:在TPUv4机柜中使用铜缆进行ICI机柜内互联(图中红部分)

  资料来源:《A Machine Learning Supercomputer with an Optically Reconfigurable Interconnect and Embeddings Support》,研究所

  图9:Dojo training tile之间通信采用定制连接器和组件实现每边9TB/s的高速率

  资料来源:Semianalysis,研究所

  铜缆是AI高速高密度场景下当前通信性价比解

  聚焦铜互联:铜互联主要应用于芯片间互联及柜内互联等等短距离场景,传输距离通常在10米及以下。铜互连指的是主要使用铜作为材料的电信号通信方式(因其导电导热性能好,可塑性强),因此其涵义其实包括了芯片内互联走线(在芯片制造时实现)、芯片间(chiplet)走线(通常在基板上完成)、模组间走线(在PCB上完成)、PCB板间通信(一般通过背板、连接器或铜缆完成)以及机框之间通信(一般通过铜缆或光模块)。

  图10:铜互联应用场景示意图

  资料来源:OIF,研究所

  图11:铜连接不同场景的典型距离

  资料来源:OIF,研究所

  在224Gbps速率下, cable(铜缆)是SERDES LR(米级)建议的电信号通信方式。随传输速率增加,传统PCB信号衰减程度提升,采用增加层数和更换新型材料则会使成本明显提升,因此cable传输代替PCB成为有效解决方案。如图13所示,横轴代表信号频率,纵轴代表信号强度(dB负值越大衰减越严重),PCB信号(红、粉、黄)的下降斜率较cable(绿、蓝)陡峭的多。根据OIF对SERDES LR的测试数据,在224G速率下,cable可传输1米,是建议的通信手段。

  图12:不同速率的SERDES-LR在cable的传输距离

  资料来源:OIF,研究所

  图13:PCB的高频衰减曲线较cable陡峭许多

  资料来源:connectorsupplier,研究所

  AI Scaleup需要怎样的通信技术?综合考虑距离、功耗、密度、串扰、成本。Scaleup指的是使用统一物理地址空间将多GPU组成一个“GPU”节点,随着大模型参数的提升,扩大Scaleup域有助于张量并行效率更高,并且简化了AI算法编程。NVLINK是GPU实现Scaleup的主要通信方式,其通过NVLINK Switch实现节点内高速交换。NVLINK Switch 3高连接8枚GPU,而NVLINK Switch 4多可扩展576个,GB200 NVL72、NVL36*2的Scaleup域为72个GPU。在8颗GPU互联时,NVLINK主要通过PCB进行intra-board通信,距离通常在1米内;而72颗GPU互联达到了intra-rack、相邻rack通信,距离通常在1米至5米,因此距离成为GB200选择铜缆互联的主要因素。除此之外,与光通信(AOC、CPO)对比,根据TheNextPlatform报告,铜缆的cost成本仅为AOC的十分之一,虽然CPO在功耗、密度、距离都更有潜在优势,但当前产业链还不成熟,其对客户机房改造、服务器设计等“潜在成本”是要高出不少的。

  图14:不同通信手段功耗、成本、密度、距离对比

  资料来源:TheNextPlatform,研究所

  图15:不同距离的通信场景适用的通信手段

  资料来源:Cadence,研究所

  铜缆互联是NVL72&36机柜内、机柜间短距互联的性价比佳方案。GB200机柜compute tray与Switch tray之间的传输距离约为0.5-1米,使用了定制化的线背板模组cartridge结合高密度背板连接器来实现背板的互联,较PCB可行度更高、较光模块成本更低。而在Switch tray交换芯片到背板、前面板英伟达则使用了的OverPass、Densilink近芯片跳线方案,以避免PCB可能出现的高频信号串扰、信号衰减过快问题。在NVL36相邻机柜间,英伟达或选择有源铜缆ACC方案,较光模块成本更低、功耗更低。

  GB200高速铜缆市场分析:预计2025年高速铜缆新增市场近60亿美元

  我们看到目前市场主要使用两种方式测算NVL72内部线单机柜价值量,且可以相互验。

  一是根据在GTC2024上的介绍,NVL72使用铜缆互联较光模块节省了6倍的成本。我们首先计算采用光模块需要的采购成本:

  B200单GPU NVLINK IO带宽为1800GB/s双向,即900GB/s(相当于7200Gb/s)单向,如果采用800Gb/s多模光模块需要9*2=18只(收发各一个连接compute tray和Switch tray),NVL72需要72*18=1296只光模块。根据帕米尔研究的报告,800G多模当前的市场ASP在430美金左右,故NVL72需要的800G光模块成本为55.7万美元。与此对比,铜缆互联的成本预计在六分之一的9.3万美元左右。

  二是根据高速铜缆的量价关系测算。

  1)单颗B200芯片的单向IO带宽为7200Gb/s,如果采用200Gb/s的高速差分铜线收发共需要72根,故NVL72需要5184根高速差分铜线。

  2)该高速铜线需要从compute tray的背板连接到Switch tray的背板(平均距离0.5-1.5米),再从Switch tray背板连接到NVLINK Switch芯片(平均距离0.5米),因此若计算端到端单根铜线的平均长度在1.5米左右。NVL72需要约7800米的铜线。

  3)价格方面,Lightcounting在《High speed cables,linear drive and co-packaged optics》报告中给出的1.6T DAC和AEC 2025年的ASP分别为259美金和405美金,我们假设1.6T ACC 的ASP折中为330美金。假设1.6T ACC平均长度1.5米,由于单根ACC包括了16根200Gb/s单通道裸线,单根200Gb/s铜线每米的价格约为13.8美金。

  4)以上铜线价格为组件层面,包括了连接器、结构件以及毛利润,我们假设内部线成本结构与之类似,可得到NVL72机柜内部线组件的价值约10.7万美金。且若根据距离来判断,其中背板和跳线的铜线价值量约2:1关系。

  对于NVL36机柜,其包括了内部线和相邻机柜连接的1.6T ACC。主要变化为compute tray数量减半,但Switch tray数量相等。按照以上量价测算法,得到NVL36内部线铜缆长度为5184米左右,价值量约7.2万美金。

  外部线ACC部分。NLV36 Switch tray包括两颗28.8Tb/s交换容量的芯片,一半带宽用于相邻机柜连接,故Switch tray前面板的IO带宽为28.8Tb/s,如果采用1.6T端口,需要18个,即2*NVL36系统需要162条1.6T ACC铜缆,其价值量约为5.3万美金。

  此外,仍有短距scaleout网络使用到DAC&ACC。根据Semianalysis的测算,ACC、DAC还会用于InfiniBand网络compute tray与柜顶交换机的互联以及带外管理网络compute tray与管理交换机的互联,在NVL36*2 CX-8配置下,这些价值量合计1.02万美元。

  总结:根据以上测算,NVL72机柜的高速铜缆合计11.7万美金,而NVL36机柜的价值合计10.4万美金。根据Trendforce,2025年GB200机柜合并出货有望达到6万台,其中NVL36可能达到5万台。以此为核心假设根据以上价值量测算,我们得到2025年GB200机柜的铜缆市场将达到约64亿美元。

  【高速铜缆市场:使用场景不断延伸,产业链上下游涉及多环节】

  高速铜缆使用场景,市场空间广阔

  高速铜缆组件由线材和连接器组成。以组件形式销售背板线模组、近芯片跳线以及外部IO DAC&ACC,高速线材和连接器作为重要原材料可能选择外采或代工方式。根据招股书,高速线缆组件产品工序包括外购线材、智能裁切、电子布线、导线端头处理、与自制的连接器端接、灌封、包装处理。高速线模组作为新兴的高速铜连接产品,工艺壁垒较高,以华丰科技的产品为例,工序合计达到1000道以上,焊点平均6000个以上,每个焊点均需性测试,且位置精度控制在±0.005mm,每个工序良率在99%以上。

  图16:高速线缆组件产品制造流程

  资料来源:招股书,研究所

  图17:金属材料、线材是2022年原材料BOM采购的重要组成部分

  资料来源:招股书,研究所

  分应用场景来看,铜互联应用场景主要有芯片直出跳线overpass、服务器内部线、背板互联线和机柜外部线。具体来看,高速跳线overpass可解决数据量激增及带宽更高时面临的传输问题,可实现AISC与背板、ASIC与IO接口及芯片之间的互连,芯片跳线主要包括C2B(芯片对背板)线、C2C(芯片对芯片)线、C2F(芯片对前面板)线;服务器内部线主要包括MCIO线、PCIE线及SAS线等等;机柜内高速背板互连指背板和单板之间通过裸线进行互连,机柜外部通过高速铜缆ACC连接到服务器SFP/QSFP等IO端口,再通过服务器内部跳线进行数输,或实现机柜与机柜之间的互联。

  在GB200机柜里,背板线模组cartridge、NVSwitch overpass&densilink、PCIE、ACC即分别对应的是高速铜缆背板互联、芯片飞线、服务器内部线、外部IO线场景。GB200系列成为高速铜互连经典系统的使用场景,也成为大的增量市场。我们尝试分别计算高速铜互联四种场景的市场空间(组件层面):

  1)高速线背板:根据Business Research报告,背板连接器市场2021年市场规模为19.4亿美元,但主要为板间高密度连接器互连方式,线背板模组将主要用于AI服务器机柜、高速框式交换机、路由器等。若按照2025年5万台NVL36+1万台NVL72机柜,参照我们上文单机柜线背板价值量测算,将新增25亿美元市场。

  2)近芯片跳线:其使用有两种场景,一是在服务器、网络设备SERDES速率达到112G以上时PCB传输距离和性能不满足要求;二是某些结构紧凑的服务器、网络设备设计时用于节省PCB面积,充分利用空间。目前市场缺乏相关统计数据,参考我们上文的价值量测算,按照2025年5万台NVL36+1万台NVL72机柜,将新增21.6亿美元市场。

  3)服务器内部线:广泛应用于通用服务器、AI服务器中存储、网卡、GPU卡与PCIE总线的互联。根据trendforce,2023年服务器出货量1443万台,按照平均每台服务器2路CPU,每路CPU使用一条PCIE4.0*16连接线,单跟价格200元(参考技嘉PCIE4.0*16显卡延长线)计算,2023年服务器内部线市场规模在8亿美元左右。

  4)外部IO线:根据LightCounting,2023年DAC&ACC市场规模为4.4亿美元,按照上文2*NVL36需要DAC&ACC 5.3万美金,2025年5万台NVL36计算,将新增13.4亿美元市场。

  图18:铜互联高速通信线类型

  资料来源:安费诺,TE,samtec,山西券研究所

  外部线可进一步分类为无源DAC、有源 ACC(Active Copper Cable)和 AEC(Active Electrical Cable),功耗均低于AOC。以400G为例,无源DAC使用导电铜线在两端之间直接连接,不包括有源元件,因此成本,传输距离不超过3米,主要用于系统内机架连接,功耗也;有源铜缆(ACC)在电缆内部添加了有源信号驱动器或均衡器芯片,可以补偿铜传输造成的部分损耗,因此传输距离可达DAC的2到3倍,功耗也随之增加;有源电缆 (AEC)在电缆内部包含retimer,可以在传输开始和结束时清理、去除噪声并放大信号,因此传输距离可达近10米,功耗也高于ACC,但仍低于有源光缆AOC。根据LightCounting的预测,2024年后DAC和AEC的市场增速远高于AOC,2028年AOC+DAC+AEC市场将超过25亿美元。其中由于AI集群建设对800G、1.6T有源铜缆的需求激增,2025年后800G AEC需求增长,2026年后1.6T AEC需求增长。

  表1:AOC、DAC与AEC比较

  资料来源:九州互联科技,山西券研究所

  图19:LightCounting预测DAC和AEC市场将稳步增长

  资料来源:LightCounting,山西券研究所

  图20:LightCounting预测AI将给800G、1.6T AEC带来爆发式增长

  资料来源:LightCounting,山西券研究所

  高速铜缆线材:高速线材具有设备和工艺壁垒

  从高速通信线制造环节拆分来看,1)材料处理:合金铜线经过拉丝工艺变成细铜线,其中核心原材料是高纯度铜材(主要供应商有博威合金、威兰德等),决定了电缆的导电性能,再通过电镀/化学镀银等方式形成镀银线(主要供应商有恒丰特导等);2)缘:镀银铜线经过挤塑缘、编织、挤塑护套、成圈包装等流程形成芯线(多数为线材厂商内部完成),其中护套材料根据民品/军品要求不同使用材料不同。一般来说单根芯线可由数根至十根以上不等数量的镀银铜线绞合而成,而对于高速数据通信芯线而言,通常由一对差分线组成;3)编织:芯线经由缘押出、平行对绕包、编织、挤塑护套等环节形成成品线材(主要供应商有安费诺、乐庭智联、安澜万锦、神宇股份、景弘盛、蓝原科技等),至此完成线材制作;4)组件组装:成品线材加上连接器可成为完整线束产品,即我们提到的高速铜互联组件,用于不同互联方案,主要供应商有安费诺、泰科、莫仕、立讯、兆龙、金信诺、华丰等厂商。

  图21:同轴电缆制作过程

  资料来源:神宇股份招股书,山西券研究所

  不同环节设备和材料对芯线到线材制作有重要影响,具体来看:

  1)缘芯线压出:缘材料对成品性能有大的影响,目前主要有PP、FEP、铁氟龙、FEP发泡、铁氟龙发泡材料等,对于PCIE6.0以上高速传输材料缘材料普遍使用发泡材料。对于缘工序来讲,需要严格控制的是缘外径、同心度、椭圆度以及电容等。2)平行对绕包:即将2根缘芯线及地线集合在一起,同时在外面包上一层铝箔或铜箔麦拉和一层自粘聚酯带,过程将影响线材的阻抗、延时差、衰减等;绕包工序中铝箔&铜箔的厚度和重叠率要严格控制,同时聚酯带绕包的方向应于铝箔&铜箔相反,同时对自粘聚酯带的加热温度也要控制。此外,平行绕包线弯曲性能差,还应尽量避免弯折,尽量做到伏贴和保护芯线。;3)线材编织:通过编织机在成缆芯线外面编上一层金属屏蔽网,以增强线材的屏蔽效果,过程中需对线材的收放线张力及排线等进行控制;4)线材外被压出:通过压出机在编织或成缆线材外面押上一层聚烯烃材料被覆 ,对线材加以保护,过程中需对张力及排线、押出方式等进行控制。

  图22:罗森泰的高性能挤出机系列

  资料来源:罗森泰官网,山西券研究所

  图23:东莞冠博机电生产的细电线编织机

  资料来源:冠博机电官网,山西券研究所

  铜互连高速连接器:技术和专利壁垒高,市场份额集中在欧美巨头

  数据中心连接器为通信连接器市场里高速成长的分支。根据bishop&associates,2022年连接器市场规模为841亿美元,其中通信为占比大的细分市场。通信连接器包括无线射频连接器、微波连接器、背板连接器、板对板连接器、线对板连接器等,主要应用在电信和数据中心两大市场。由于发达国家5G建设的阶段性放缓、传输网建设的周期性等因素,通信市场表现平缓,而以大模型为代表的AI算力建设2024年后驱动科技企业数据中心资本开支大幅提升,且主要用于AI服务器采购,数据中心成为通信连接器市场增速快的赛道。

  图24:连接器市场规模

  资料来源:方向电子招股书援引bishop&associates,山西券研究所

  图25:2022年连接器应用领域分布

  资料来源:方向电子招股书援引bishop&associates,山西券研究所

  GB200高速铜连接中主要涉及到的是IO CAGE、背板连接器、近芯片连接器等。GB200机柜对于高速连接器的用量提升显著,其中800G、1.6T IO CAGE用于和光模块&ACC对插的端口,尤其是1.6T IO CAGE单通道速率提升至224Gbps,对于高频高速防串扰设计成为难点。而背板连接器、近芯片连接器目前代表性的是安费诺的Paladin、OverPass系列,此类连接器的特点是超高速信号以及大电流密集传输,pin脚密集,对于连接器制造的精度、一致性、电镀处理难度大。

  图26:NVL72 NVLINK高速铜互联使用的连接器种类和数量

  资料来源:Semianalysis,山西券研究所

  图27:NVL36*2 NVLINK高速铜互联使用的连接器种类和数量

  资料来源:Semianalysis,山西券研究所

  高速高密度连接器技术、专利壁垒高,市场份额高度集中。根据华丰科技《IPO首轮问询回复意见》,通讯高速连接器的关键工序和核心环节包括磨具设计与制造、塑压成型、冲压成型、玻璃密封连接器烧结、壳体类零件机加工、接触件零件机加工、表面处理、接触件制造、零件热处理、接触簧片的自动连续塑封、自动装配和检测、模块化&无缆化产品装联等细节,核心包括成型精度、精度一致性、表面镀膜一致性、接触件使用寿命、接触件应力、热性能等等。根据中国工程咨询有限公司的《重点电子元器件研究报告(缩写版)》,在25Gbps及以上高速连接器领域,泰科、安费诺、莫仕三大美国巨头通过、相互授权专利长期处于,形成“一家独大两强相随”面。其中25Gbps连接器市场安费诺、莫仕、申泰、泰科分别占比72%、20%、3%、5%;56Gbps连接器市场安费诺、莫仕、申泰、泰科分别占比60%、28%、10%、2%。

  高速铜互联组件:竞争格相对集中,国产替代具有空间

  由于高速铜互联组件厂商的话语权主要集中在连接器领域,因此连接器的竞争格基本顺延到组件市场,国内厂商仍有替代空间。根据QYReasearch《高速直连铜(DAC)电缆市场研究报告2023-2029》,外部IO组件DAC,目前主要供应商包括安费诺、molex、泰科、Juniper、Volex、英伟达、泛达、博迈立铖、佳必琪、立讯等。2022 年前十强厂商占有大约 69.0%的市场份额,其中安费诺为主要供应商,份额领先;国内厂商主要包括立讯精密、兆龙互联、金信诺等。而对于高速背板领域,根据华丰科技招股书,安费诺、泰科、莫仕占据较大市场份额,国内逐渐形成了以华丰、庆虹、中航光电为主的格。对于近芯片跳线领域,我们认为安费诺在处于对领先,海外samtec、泰科,国内立讯精密、华丰科技等处于挑战者。,服务器内部线领域,竞争格相对分散,海外玩家主要是安费诺、泰科、molex、Volex、samtec,国内玩家包括立讯精密、鸿腾精密、兆龙互连、金信诺等。

  高速铜连接市场有望从英伟达引领扩散到海外 UALINK 和国产配套,铜连接作为Blackwell 显著的增量产品有望“”光模块行情,2025 年市场需求或爆发增长。NVL72的意义在于引领scaleup通信技术发展,海外 UALINK 以及国内智算集群均有望跟进。今年5月底,英特尔、AMD、博通、思科、谷歌、HPE、Meta 和微软宣布建立 UALink 推广工作组,以指导数据中心AI 加速器芯片之间连接组件的发展,希望未来可以取代 NVLink 接口。UALink 1.0 规范将支持多达1024个加速器内存统一互联,虽具体实现方式仍未知,我们认为高速铜缆架构不失为成熟的解决方案。国内方面,中国移动编制的《面向超万卡集群的新型智算技术白皮书》倡议加速推进超越 8 卡的超节点形态服务器,优化 GPU 卡间互联协议实现通信效率跃升,可以期待国内AI大芯片在 scaleup 互联技术也在酝酿更大的动作。以华为为例,其2022 年底推出的“天成”多样算力平台旨在设计更高的算力密度,超节点形态服务器设计将是下一步工作重点。

  图28:UALINK 拓展通用 scaleup 协议

  资料来源:云,山西券研究所

  图29:华为“天成”机柜级算力平台产品

  资料来源:华为,山西券研究所

  【投资逻辑与建议关注】

  聚焦英伟达上游配套,关注国产方案

  投资角度来看,国内公司主要聚焦于英伟达上游配件供应,海外连接器巨头配套:高速裸线、CAGE代工将受益于产能扩张和价值量提升。由于与英伟达的联合研发以及对于核心专利的掌握,GB200高速铜连接前期价值量或将主要集中于以安费诺为代表的连接器巨头厂商。安费诺成立于1932年,是大连接器和线缆组件制造商之一,公司总部位于美国康涅狄格州,并在多地设有超过100家子公司及办事处,产品涵盖线缆及连接器等全面组件,下游应用到工业、消费电子、通信等多领域。根据2023年年报,公司用于数据中心占比约为19%,出货地区主要为北美地区。

  图30:安费诺2023年收入下游主要领域

  资料来源:安费诺2023年年报,山西券研究所

  图31:安费诺2023年收入出货地区

  资料来源:安费诺2023年年报,山西券研究所

  针对GB200集群,国内集中了安费诺大的信息通信产品线配套产能,其对于224G高速线、cage结构件等高速产品配套需求或增加,同时对于中低端产品线的产能外包需求也将外溢。安费诺国内合作伙伴包括乐庭智联(沃尔核材)、神宇股份、鼎通科技、奕东科技等,以沃尔核材为例,根据2024年7月24日投资者关系活动记录表披露,高速通信线订单需求在不断增长,已下单采购几十台绕包机和多台芯线机以进一步满足产能需求,可预见未来由产能提升和产品价值量提升带来的收入增长。

  图32:安费诺Spectra-Strip 224G高速线与各种高密度连接器组成了面向数据中心的铜连接解决方案

  资料来源:《Amphenol OverPass》,山西券研究所

  产业链公司简介

  从产品应用领域及与下游客户合作来看,产业链相关推荐公司主要包括线材及连接器相关厂商,包括立讯精密,神宇股份,沃尔核材,新亚电子,鼎通股份、兆龙互联、华丰科技等。

  立讯精密:拥有高速铜连接全套解决方案。公司在数据中心通信互联方面产品主要包括电连接(连接器及连接器模组,线缆及线缆模组),光联接(AOC,光模块,光跳线等),以及热管理和电源等。根据公司2024年4月26日投资者关系活动记录表披露,公司可为英伟达NVL72提供约 209 万元的解决方案,包含电连接、光连接、电源管理、 散热等产品,后续有望受益于英伟达高速铜连接组件供应商的拓展以及UALINK成员、国产AI服务器等其他客户的导入。2023年,立讯精密营收2319亿元,其中通讯互联产品及精密组件营收145亿元,高速铜连接将成为立讯通信业务有力增长引擎。

  图33:立讯高速铜连接产品

  资料来源:立讯精密官网,山西券研究所

  立讯精密的子公司汇聚科技专注铜缆和光缆组件产品并切入服务器代工。立讯精密于2022年上半年完成对汇聚科技的,汇聚科技拥有超30年行业经验,以定制电线互联方案起家,目前供应各种铜缆和光缆电线组件、数字电线产品及服务器。其服务器业务于2022年以JDM/ODM模式切入,根据品牌客户的需求深度定制,有望充分利用公司在铜缆和光缆组件的设计制造优势为服务器客户提供差异化解决方案。根据汇聚科技2023年年报,自2023年3月31日至12月31日的会计年度期间收入为48亿港币,电线组件(包括数据中心、电讯、医疗设备、工业设备、汽车)、数字电线(包括网络电线、特种线)以及服务器业务分别占比35.8%、18.0%、46.2%。

  风险提示:数据通信组件客户开拓不及预期、224G高端组件产品量产进度不及预期、汇率波动风险、客户相对集中风险。

  图34:汇聚科技电信与数据通信连接方案

  资料来源:汇聚科技官网,山西券研究所

  图35:汇聚科技汽车线束连接方案

  资料来源:汇聚科技官网,山西券研究所

  沃尔核材:子公司乐庭智联是国内高速线材领军者。公司主营高分子核辐射改性新材料及系列电子、电力、电线产品,其中电线产品主要由子公司乐庭智联经营,包括高速通信线、汽车线、工业线及消费电子线等,为直接线材产品。公司与安费诺、莫仕等头部客户建立了长期稳定合作,多款单通道224G的高速通信线已通过客户测试进入小批量交付阶段。在产能方面,乐庭拥有绕包机140多台,芯线机近20台,仍有几十台绕包机和多台芯线机已订购。外部IO线方面,公司正配合客户进行1.6T高速线产品打样。我们认为公司在高速通信线领域技术储备充分、产能领先,有望充分受益于大客户订单爆发。

  风险提示:上游原材料价格上涨公司未做好应对导致毛利率下滑风险,高速通信线产能扩张不及预期导致订单丢失风险,高速通信线良率爬坡不及预期风险,新能源汽车基础设施投资不及预期风险。

  图36:乐庭智联QSFP高速电线系列

  资料来源:乐庭电线官网,山西券研究所

  图37:沃尔核材电线电缆业务近十年收入毛利率变化

  资料来源:wind,山西券研究所

  神宇股份:专注同轴电缆产品,高速线材异军突起。公司从事高频射频同轴电缆产品生产,主要产品为射频同轴电缆、射频连接器和组件,包括细微射频同轴电缆、细射频同轴电缆、半柔半刚射频同轴电缆、稳相微波射频同轴电缆、军标系列射频同轴电缆等多种产品。公司在智能手机、笔记本等消费电子市场已具备较高的市场份额,在高速数据中心领域已形成定制化、特化产品系列,取得多家国内外重要客户批量供货。公司拥有定制化挤出机、编织机、横卷机等充足产能,目前在手订单良好,2024Q1营收同比增长33.3%,将持续推进新产品研发和量产。

  风险提示:客户相对集中风险,铜等原材料价格上涨降低毛利率风险,射频同轴电缆市场竞争加剧导致收入下滑风险,高速通信线人才流失或短缺的风险。

  图38:神宇股份产品覆盖通信、消费电子、航空航天、汽车、医疗多领域

  资料来源:神宇股份官网,山西券研究所

  新亚电子:主要聚焦服务器内部线,安费诺高频高速PCIE线材主要供应商。公司是精细电子线材厂商,主营线材产品涉及消费电子、工业控制、汽车电子、新能源、通信及数据中心等。在高频高速数据线材,公司主要产品包括PCIe4.0/5.0/6.0等,主要用于AI人工智能服务器,向美国安费诺(直接客户为厦门安费诺电子装配有限公司)等客户供货,终端应用客户包括戴尔、惠普、浪潮、谷歌、亚马逊、微软、甲骨文、中科曙光、新华三等服务器制造商。2023年公司营收31.9亿元,通信线缆及数据材料营收14.7亿元,近几年高频高速线材的营收平均在7000万元左右,目前根据客户指引稳步扩产。

  风险提示:铜材等原材料价格波动风险,整合风险和对于少数股权的经营管理风险,商誉减值风险,消费电子和通信领域线材竞争激烈导致毛利率下滑风险。

  图39:新亚电子下游客户

  资料来源:公司招股说明书,山西券研究所

  图40:新亚电子用于服务器的SATA线产品

  资料来源:新亚电子官网,山西券研究所

  鼎通科技:通讯、汽车双轮驱动,在数据中心领域主要供应高速IO壳体以及背板连接器组件。公司高速通讯连接器及组件主要包括高速背板连接器组件和IO连接器组件,形态为精密结构件和壳体(CAGE)等。在通讯领域,公司与安费诺、莫仕、泰科、中航光电等建立了长期稳固合作关系,其QSFP-DD 112G/OSFP-DD/OSFP系列不断加大与客户合作。汽车连接器及其组件主要供应控制系统连接器、高压互锁连接器、线束连接器、高压连接器、电控连接器等,不断加深与比亚迪、长安汽车、南都电源、蜂巢能源、富奥汽车、罗森博格等客户合作。2023年,公司营收6.1亿元,其中通讯连接器、汽车连接器分别实现3.5亿元、2.1亿元。

  风险提示:铜材等原材料成本上涨导致毛利率下行风险,市场开拓不及预期导致新增产能消化不足风险,高速通讯连接器新料号导入节奏不及预期风险,汽车行业增速下滑风险。

  图41:鼎通科技通讯连接器组件

  资料来源:鼎通科技招股书,山西券研究所

  兆龙互联:国内数据通信组件和布线领先企业。公司从事数字通信电缆行业,产品包括数据电缆及布线(覆盖从5e到8类的数据电缆)、电缆(包括高速传输电缆、工业数字通信电缆)以及连接产品(包括数据电缆组件、高速电缆组件、工业电缆组件)。在高速通信领域,公司的高速传输电缆用于交换机与服务器集群设备之间、服务器内部的高速平行传输对称电缆,目前已出货单通道112Gb/s的产品。公司致力于将电缆产品向下游延伸至组件,其高速电缆组件拥有高速电缆、PCBA、线端连接器整体制造能力,已实现QSFP-DD 800、OSFP 800等高端DAC/ACC外部IO组件的出货。2023年,公司营收15.6亿元,以数据电缆收入为主,营收12.3亿元,其次连接产品、电缆分别营收1.2亿、1.2亿元。

  风险提示:主要原材料价格波动风险,海外投资风险,汇率波动风险,高速电缆组件市场拓展不及预期风险。

  图42:兆龙互连高速互连产品

  资料来源:兆龙互连2023年年报,山西券研究所

  华丰科技:高速背板连接器国产替代先锋,受益于国产算力建设。公司是国有控股的核心骨干高新技术企业,经过改制解决了历史包袱、实现了市场化的经营管理和员工激励。公司聚焦在防务类、通讯类、工业类三大连接器领域,2023年营收8.9亿元,连接器、系统互连产品、组件分别营收5.1亿、2.0亿、1.6亿元。高速线模组有望成为公司未来几年重要引擎,作为国产替代主要承研和制造单位,公司解决了模组生产中的高速连接器、微小零件激光焊接、电阻焊接以及焊接性技术难题,目前已投资建设高速线模组6条产线,并于7月开始进行批量生产交付。公司的高速线模组产品包括背板高速线模组、IO高速线模组、板内CTC高速线模组以及板间BTB等主流架构产品,与海外巨头安费诺等完整对标。目前112G高速背板产品已批量发货,224G产品已达到样品试制合格状态,还实现了服务器液冷cable tray研发以及200针级双LGA IC Socket国产替代。

  风险提示:主要客户相对集中的风险,专利申请无效和侵权纠纷风险,军工业务受行业波动订单恢复不及预期风险,高速背板竞争格恶化风险,主要原材料价格上涨的风险。

  图43:华丰科技通讯连接器产品

  资料来源:华丰科技招股书,山西券研究所

  【风险提示】

  1)对于高速铜缆价值量预期过于乐观风险。英伟达GB200项目是224G高速铜缆产业界投入大批量生产的产品,目前产业链多处于验或小批量出货阶段。高速铜缆的单机柜价值量、市场空间取决于供应商报价、安费诺毛利率策略、英伟达成本管控等多方面因素,本报告的测算可能过于乐观。

  2)GB200机柜量产进度延后导致相关公司订单落地、业绩释放不及预期。GB200产业链涉及到高端制程代工、COWOS封装、HBM3e芯片、光模块、PCB、高速铜缆等诸多环节。任一环节出现良率、产能爬坡瓶颈均会影响GB200机柜量产节奏,从而导致铜连接相关公司业绩释放不及预期。

  3)相关公司设备或良率瓶颈导致产能释放不及预期风险。224G高速铜缆生产需要的设备包括挤出机、绕包机及相关测试机台等,行业短时间内爆发可能导致设备交期延长进而导致相关公司产能扩张进度不及预期,从而有订单丢失或份额不及预期风险。

  4)原材料成本上涨、良率低导致毛利率不及预期风险。高速铜缆企业的毛利率取决于订单价格、上游铜材、屏蔽缘材料、设备折旧、人员工资等诸多因素,倘若原材料成本上涨超预期或生产良率较低将导致BOM成本、制造费用等占比超出预期,从而导致盈利能力下滑。

  5)竞争格恶化风险。首先224G高速线缆组件属高毛利产品,下游连接器巨头若扩产充分可能增加内部产能配套比例从而导致高速线材采购量下降;此外,若更多的企业掌握高速铜缆生产工艺和产能储备,下游客户的选择可能更加多元,高速铜缆企业议价能力相应下降,从而导致订单价格大幅下滑,产生营收增速放缓、毛利率下滑等风险。

  6)技术路线不确定风险。本文指出,在AI Scaleup互联中可选通信技术包括PCB、铜缆、AOC、OIO等,当前铜缆在通信性能和方案成本上相对折中为佳方案。随着互联距离从机柜内拓展到机柜间以及通信带宽的进一步增长,光通信可能成为在性能上的唯一解决方案;且随着OIO、CPO等光电集成封装技术成熟,光通信短距互联成本有望进一步下降,铜互联在某些场景使用价值可能被光通信所取代。