十堰市高品质入户光缆公司电话
光纤传感技术的创新应用
Φ-OTDR分布式传感可定位50km范围内0.01℃温度变化,用于管道泄漏检测。FBG传感器单纤集成1000+测点,应变测量精度0.1με。DAS系统实现40km振动监测(定位精度±5m),用于周界安防。医疗OCT光纤探头分辨率达1μm,支持实时三维成像。电力变压器绕组测温光纤耐受150kV工频耐压。最新微波光子传感系统将相位噪声降至-120dBc/Hz,用于雷达阵列校准。
历史对于后人不仅仅是一种追忆,更重要的是在了解中得到启迪:只有不断,才有真正的生命力。
历史已经明,电线电缆产品的发展是与社会进步紧密相连的,一项重大的技术突破会推动社会某一领域的突变。
一、发现“电”可沿金属线传输(1800年前)
公元前500年,希腊泰勒斯发现摩擦生电。
1729年,英国人格雷发现“电”可以沿金属线传输,人类有了“导体”的概念。
1740年,法国的德札古利埃规定了导体与缘的定义。
1744年,德国人温克勒用电线把放电火花传输到远距离,宣告了电线的诞生。
1752年,美国人富兰克林发明了避雷针,并用电线接地,这是电线的首次实用化。
1799年,意大利人伏特发明电池,获得了持续电流。
二、“电报机”的发明推动了电报电缆的研发、应用(1875年前)
十九世纪初,丹麦的奥斯特、英国的法拉第、德国的欧姆、美国的亨利等大批欧美物理学家不断发现和创立了现代电学、电磁学的许多基础理论,为今后的电力、信息传输打开了闸门。
1833年,高斯和韦伯制成了部电磁指针电报机,用于1公里长的线路上,用了6年。
1835年,美国莫尔斯发明了有线电报机,促进了通信电缆的发展。
1839年,库克、惠斯登在伦敦建成了条21公里长的电报线路。1841年纽约港敷设了橡皮缘的海底电报电缆。
1851年,英国敷设了穿越英吉利海峡的海底电缆。此后,欧美各国竞相发展;二三十年间,电报电缆几乎遍连各国的主要大城市。至1920年,英国建成了连接英联邦各国、环绕世界的电报电缆网,引发了美、日等国敷设海底电报电缆的高潮。
1871年,英国大东公司在中国上海与日本长崎之间敷设了橡皮缘海底电报电缆。
三、线缆产品在三大领域遍地开花(1980年前)
(一)电磁线
1、1875年,美国人亨利取得了个缘漆和纤维专利。美国GE公司在1902年制成醋酸纤维漆包线;1909年制成油性漆包线;1925年制成聚乙烯醇缩甲醛线;1938年发明了缩醛漆包线;1954年发明了聚酯漆包线。
2、日本在1939年开发了玻璃漆包线;1954年制成了硅酮漆包线。德国在1940年制成了聚氨酯漆包线。
3、美国道奇公司在1951年发明了自粘性漆包线;1963年制成了复合漆包线。
4、美国杜邦公司在1957年发明了丙烯酸漆包线;1961年制成聚酯亚胺漆包线和聚酰亚胺漆包线;1964年制成聚酰胺-酰亚胺漆包线。
5、上海电缆研究所在1966年制成聚酰亚胺漆包线;1970年制成聚酰胺-酰亚胺漆包线。
(二)通信电缆
1、1876年,美国贝尔发明有线电话机,美国制造市内通信电缆。1878年,美国在纽约与波士顿之间开通了条长途话缆线路。
1889年美国WE公司开始大批量生产纸带绕包缘铅包市内通信电缆。
1891年英法海峡敷设早的海底话缆。
1898年英国在伦敦与伯明翰之间敷设了一条长达46公里的19个四线组成的长途通信电缆;用至1938年又改为载波通信。
2、1921年,美国与古巴间敷设了条同轴海底话缆。
1932年,英国与比利时之间敷设了条载波传输的海底同轴电缆。
1936年,德国制造宽带同轴电缆用以传输电视。
1939年,德国、美国开发了聚乙烯料,应用于各种通信电缆。
1944年,美国与法国间敷设了距离长的(100海里)海底电缆。
1949年,美国制成公用天线电视电缆(CATV)。
1950年,美国制成全塑(PE)皱纹铝带综合护层电话电缆。
3、1956年,英、美、加三国合作敷设了条跨越大西洋的对称式电话电缆,全长4300公里;1959年,美、法、加三国合作敷设了第二条大西洋海底通信电缆(同轴式)……。至1976年,共敷设6条跨越大西洋的海底通信电缆。此后,在大西洋及各个海域陆续又敷设了大量的海底通信电缆,使世界各地区、各国之间信息传输畅通。
4、1976年10月,中日之间的海缆系统开通,有480话路。
(三)电力系统用线缆
1、1879年,美国爱迪明了白炽电灯,制成黄蔴沥青缘电力电缆,敷设于纽约。同年,瑞士博雷尔发明压铅机,可制造铅包电缆。
1887年,美国布鲁克斯用低粘度缘油浸渍纸作为电力电缆的缘。
1888年,英国费伦蒂制成10KV油浸纸缘电缆(二芯,同芯式)。
1890年,美国制成三芯油浸纸缘电力电缆。
1893年,英国BICC公司开始生产纸力缆。
1910年,德国在柏林敷设30KV三芯电缆,1911年敷设60KV单芯电缆。
日本于1911年生产10KV纸力缆。
2、1877年,美国托马斯发明了铜线冷拉工艺,使铜线抗拉强度和导电率大幅提高,可用于作架空导线。
1882年,德国采用铜架空线输送直流电,1886年采用美国用架空线传输交流电。
1895年,美国首次制成铝架空线;1908年采用钢芯铝绞线。1915年首次生产铜包钢线。
1922年瑞典研制出1号铝合金架空线。
3、1903年,IEC制定了靱炼铜的导电率标准(IACS)。
4、1917年,意大利发明了自容式充油电缆。
1923年,美国敷设66KV充油电缆;1924年敷设132KV充油电缆。
1932年,意大利在米兰敷设220KV充油电缆。
1938年,瑞典南方电厂敷设380KV充油电缆;1955年敷设425KV充油电缆。
1957年,法国制造500KV充油电缆。
1972年,美国制成500KV钢管充油电缆。
1959年,中国研制出66/110KV和220KV自容式铅包电缆试样;66KV电缆于1964年在大连第二电厂应用。110KV电缆在1968年用于南京长江大桥旁(过江电缆)。1973年,制成330KV充油电缆用于刘家峡电站二期工程。
5、1937年德国首次研制出PVC缘电线,很快在各国得到发展。
1946年,美国首次制成15KV聚乙烯缘电缆;1952年采用辐照交联聚乙烯制造电线。1958年美国采用了DCP后,发明化学交联法;1967年美国康宁公司发明硅烷交联法。这些,使各种交联型线缆产品得到迅速发展。
1961年日本购得美国专利首先制造化学交联聚乙烯电力电缆,1962年制成66KV级,1973年试制275KV级交流电力电缆和500KV直流电缆。1980年研制500KV级交流电力电缆;并于2000年在东京安装,开通使用(39.8公里)。
1983年,中国由上缆、沈缆和电缆所合作研制成500KV充油电缆及附件,在辽锦线上挂网试运行。
四、向着更高、更广、更精的目标前进
(一)输电电压更高,从架空线网开始
1、1964-1968年间,美国、前苏联架设了±800KV直流输电线路,采用钢芯铝绞线。
2、1973年,中国湘潭电缆厂制造钢芯铝绞线,敷于南京长江大桥旁,长1.93公里;1978年研制铝-镁-硅稀土架空导线。
1980年,武汉电线厂生产稀土铝合金导线。
3、1999年,日本建设交流1000KV、8分裂架空线网,长250公里。
4、2007年,中国开始建设±800KV直流架空输电线网。
(二)光通信扩展着信息传输的未来
1、1966年,英籍华人高锟首次提出用石英纤维远距离传输光波的概念;1970年,美国康宁公司研制出低损耗石英玻璃纤维。1976年,美国贝尔与西点公司建成光通信实验室;同年,法国安装了19芯光纤的光缆线路,美国安装了144芯光纤的光缆线路,供试验用。
2、1974年,日本用光缆传输彩电视成功。1978年,中国上海电缆研究所研制成功短波长松套层绞光缆,随后在上海电话线路中运行。
3、1983年,英国电信公司首次正式应用了8芯单模光纤的光缆线路,长27公里。
1985年,日本建设贯通全国的、长达3400公里的光缆线路网。
1986年,英国-比利时建成条海底光缆线路。1988年又开通条跨大西洋的海底光缆线路,长6500公里。至1996年,共建成7条跨大西洋的光缆线路。
4、1989年,美国与日本间的条太平洋光缆线路开通。至1997年光缆互联线路网(FLAG)投入运行,光缆线路总长2.8万公里。
5、1993年10月,世界长的一条陆上光缆(成都514厂制)在中国开通;从北京到海南,全长4700公里。随后又与亚太9个国家或地区联合建成亚太海底光缆网,总长1100公里。
(三)超导电缆方兴未艾,正走向实用
1、1962年,美国开发出超导电磁线。
1967年,英国进行超导电缆通电试验,并于1970年建立超导交流试验线路。
1972年,美国研制成可绕性带缘超导电缆。
2、1995年,美国超导公司建成首条30m长的高温超导电缆线路。
2002年,日本完成一组100m、66KV/1KA的平行三芯超导电缆试验系统;2003年又完成500m,77KV/1KA的高温超导电缆试验。
3、2004年,中国北京英钠超导技术有限公司研制的30m、35KV、2KA高温超导电缆,在云南普吉变电站并网试运行。
4、2006年,美国超导公司研制出600m、3相、138KV、2.4KA的冷缘高温超导电缆开通运行。
十堰市高品质入户光缆公司电话
【技术实现步骤摘要】通信缆线圆形模具排线装置
本技术涉及一种通信缆线的安装设备以及工艺方法,尤其涉及一种通信缆线圆形模具排线装置。
通信缆线是由若干根单线构成的缆心和外护层所组成。通信缆线正广泛地用于电信、电力、广播等各部门的信号传输上。 将包含很多根单线的缆线逐根安装接入某些设备上,需要将不同粗细的单线或不同颜的单线进行区分,采用人工分离的方法,效率低下,出错的概率也较大,是将粗细不同单线的缆线排布在特定结构的模具上,采用人工方法不现实。
十堰市高品质入户光缆公司电话
其他技术:5-1、新型四段Power™4导轨推出,其特点是拉力小且无需维护,具有低拉伸率、蓝粘合剂涂层、优化切割以减少弯曲应力并提率等特点。
5-2、矿物缘类不燃性电缆的开发,实现了矿物缘电缆产品的系列化,根据不同使用场景进行了优化。
不同通信电缆型号在实际应用中的性能表现如何?
1、铝合金电缆与铜芯电缆:
在相同载流量对比中,铝合金电缆的总重量为8060KG/km,而铜芯电缆的总重量为3746KG/km。两者在电压降方面表现相似,均为0.29。然而,在抗拉强度上,铜芯电缆表现更优。
用电缆:主要指在电信内使用的通信电缆,一般安装在配线架上,也有的安装在走线槽中;用电缆用于电信内传输设备与交换设备之间,以及其它内设备的内部。在电信内部为了防火,有时候还需要给用电缆加上阻燃护套。通信电缆基础知识
一、通信电缆概述............................................2
1.1通信电缆的定义.......................................2
一种城市通信缆线预设通道传输设备,本设备主要部件包含六个部分,分别是预制钢结构框架,传输轨道,滑吊,电机减速机及控制器,手动传输绞盘,绞索控制器控制电机经过减速器减速至合适的速度带动卷扬机构转动,卷扬机构旋转使得绞索不断的缠绕在卷扬机构上,从而实现绞索的传输;在绞索上设置固定点,固定点上套有环形扣,环形扣通过铰链联接至滑吊,滑吊上设有吊钩;绞索上的固定点通过环形扣和铰链带动滑吊沿着传输轨道移动。(*该技术在2021年保护过期,可自由使用*)
一、馈线的基本概念
馈线(feeder)在我国国家标准GB/T 14733.10《电信术语 天线》中定义有两层含意。其一是指:连接天线与发射机或收信机的射频传输线。其二是指:对于包括不止一个受激单元的天线,设施连接天线输入端与一受激单元的射频传输线。显然,这里要分析的馈线,主要是指层含意,即用于传输收/发信设备与天线之间射频信号的传输线。
是,馈线属于射频传输线。根据GB/T 14733.2《电信术语 传输线与波导》对于传输线的定义是:在两点之间以小辐射传送电磁能量的一种(传输)手段。注意,传输线是用来传送电磁能量,而且是辐射的形式传送,其特性是适用于电磁场理论来分析(与低频电路的电压、电流及电阻来衡量是不同的)。因此,传输线可以用双导体来实现(如平行线、同轴电缆等),也可以用单导体来实现(如波导等)。在无线通信系统中,具体传输线形式的采用是与所传输射频信号的频率频段范围相关的。
在实际工程中,天线设备与收发信设备往往是有一段距离的,因此,不同的无线通信系统,其采用的馈线形式、长度是不同的,如地面微波接力通信系统,其馈线长度较长(可达几十米),在射频频率频段较低时(如2GHz以下)可采用同轴电缆馈线系统,在射频频率频段较高时应采用波导馈线系统。
二、馈线的常用形式
在地面无线通信系统中,所用馈线的形式种类通常有:双导体平行线(也称架空明馈线)、同轴电缆馈线和椭圆波导馈线。它们各自的特征汇总于下表2-0中。
表 2-0:平行线馈线、同轴电缆馈线与波导馈线的特征
1、平行线馈线
平行线馈线多用于短波通信系统的馈线,由于常采用在电杆上架一对或多对明导线,一对导线构成一个电信道,所以也称为架空明线馈线。常用的架空明馈线有平行双线、边联四线、交叉四线等。架空明馈线的优点是传输损耗小、结构简单、架设方便、成本低,缺点是存在辐射损耗、占地面积大,主要用于短波和超短波通信。
平行双导线(Parallel Two Wire)是由两根平行导线构成(可采用铜/铝/钢等材料),其截面结构示意图如下图2-1(a)所示,其图2-1(b)为其界面上的电力线和磁力线的分布图。由图和电磁场理论可知,平行双导线传输的电磁波是横电磁波(TEM,Transvers
Electromagnetic Wave)。
图 2-1:平行双导线的横截面示意图与其电磁场分布
由于平行双导线馈线传输的是横电磁波(TEM),在传输的射频频率增高时,其横截面尺寸(D和d)与波长的相关性越来越高,其传输损耗越来远大。这是因为,导线内外磁场的方向和大小都是交变的,这将在导线内产生感应电动势,在这两个内外感应电动势的作用下,在导线中将产生的电流和原导体中流过的电流相反,频率愈高感应电动势愈大。因为导线内层比外层部分有更多的电力线包围,所以导线中心感应电动势比外层要大。换句话讲,在导线中心的电流比导线其他点上要小,随着频率曾高,此现象愈显著,这种现象称为集肤效应,它将增大导线的等效电阻。这就是为什么平行线馈线常用于短波通信系统的馈线,短波通信的工作频段是指3~30MHz范围,处于低频段的射频频段范围。需要指出的是,短波通信的馈线系统除可采用平行双导线馈线外,也可采用同轴电缆馈线(如SYWY-50-7(或9)柔软同轴电缆)。
2、同轴电缆馈线
经上分析,平行双导线馈线由于其集肤效应现象,使得随着射频频率的增高其传输损耗而增大,导致馈线的传输性能的急剧下降。鉴于此,我们可以利用电缆的集肤效应现象,采用同轴导线作为射频馈线,即同轴电缆可以在一定的射频频段范围内来提高馈线的传输性能。
欲具体了解同轴电缆介绍的请进入。
同轴电缆(Coaxial Cable)如下图2-2-1所示,是由共轴线的实心圆柱导体(内导体)和空心圆柱导体(外导体)构成的双导线传输线。电磁场在内外导体之间传输,外导体对电磁波能量具有保护作用,其集肤效应现象也集中在内外导体之间,故可以避免一定的辐射损耗。事实上,同轴电缆是同轴线的一种形式,即软同轴线。因此,由电磁场理论可知,同轴电缆既可以传输无散的TEM模式,也可以传输TE模式(横电场模式)和TM模式(横磁场模式),但TEM模式是同轴电缆的主传输模式,下图2-2-2是同轴电缆横截面结构和其内部TEM模场分布图。
图 2-2-1:同轴电缆的结构图
图 2-2-2:同轴电缆的横截面结构和其内部TEM模场分布图
欲具体了解同轴线介绍的请进入。
由于同轴电缆主模工作于TEM模,具有宽频带特性,可以从直流一直工作到毫米波段,因此,同轴电缆作为馈线可以用于短波通信(它的高频段),也可以用于微波接力通信(它的低频段)。短波通信同轴电缆馈线多选用50Ω的SYV型或SYWY型柔软射频同轴电缆;微波接力通信同轴电缆馈线常选用50Ω的泡沫聚烯烃缘射频同轴电缆。
欲详细了解SYV和SYWY同轴射频电缆结构尺寸与特性参数的请进入。
欲详细了解50Ω的泡沫聚烯烃缘射频同轴电缆技术要求的请进入。
3、波导馈线
上述介绍的同轴电缆馈线,在工作的射频频段继续提高时,其集肤效应现象带来的影响将加剧,使其传输的电磁场能量集中于外导体,内导体已将失去了传导作用。于是,此时干脆抽去内导体,使之成为一个单导体的传输线,这就是波导。GB/T 14733.2对波导(waveguide)的定义是:由引导电磁波沿一定方向传输的系统性物质边界或结构组成的一种传输线。波导有硬波导和软波导之分,硬波导是由铜及铜合金材料制成,根据其横截面形状有矩形波导、扁矩形波导、方形波导和圆形波导之分;软波导常用的是由铜及铜合金材料制成横截面形状为椭圆铜管外加一层护套(聚烯烃等材料),适用于工程中长距离布线。
欲具体了解硬波导管介绍的请进入。
下图2-3-1是一个矩形波导的结构示意图,由电磁场理论可知,波导内是不能传输TEM模式,只能传输散的TE模式和TM模式,下图2-3-2是矩形波导传导主模TE10模的电磁场分布图。
图 2-3-1:矩形波导结构示意图
图 2-3-2:矩形波导传导主模TE10模的电磁场分布图
由于波导可以传输截止波长长的低次模的主模,被广泛的应用于工作在射频的高频段(微波频段)的无线通信系统的馈线,如微波接力通信系统、卫星通信系统等。椭圆形软波段馈线是应用多的一种,通信行业标准YD/T 831《微波接力通信系统椭圆软波导技术条件》对其技术要求做出了规定。
欲详细了解椭圆软波导技术要求的请进入。
另外,国家标准GB/T 9404《微波接力通信馈线系统技术条件》将微波接力通信馈线系统分为同轴电缆馈线系统(射频工作频率在2GHz以下的系统中使用)和椭圆软波导馈线系统,并分别规定了其技术要求。
欲详细了解GB/T 9404标准具体规定内容的请进入。
三、馈线的技术特性
1、馈线的工作状态
综合上述分析,馈线用以以小辐射的传送电磁能量。那么根据馈线入射波是否被反射及反射的程度,馈线有行波、驻波和复合波三种工作状态。其含义详见下表3-1,可见它们于负载阻抗与馈线的特性阻抗匹配程度相关,为了提高馈线传输电磁波的效率,应注意馈线与负载的匹配。
表 3-1:馈线的工作状态的概念
2、馈线基本特性
馈线的基本特性通常用它的一次分布参数和二次分布参数表示。一次分布参数系指馈线单位长度的分布电阻R、电感L、漏电导G和电容C,根据一次分布参数的关系可划分为低频传输线和高频传输线,详见下表3-1-1。二次参数系指馈线的特性阻抗Z、衰减常数β、相移常数α和传输常数γ等。另外馈线的反射系数P、行波系数K和驻波比S均是馈线特性阻抗与负载阻抗匹配程度的表征量,其涵义详见下表3-2-2。
表 3-2-1:关于低频传输线和高频传输线的含意
表 3-2-2:馈线反射系数、行波系数、驻波比的涵义
馈线的特性阻抗Z是馈线的一个重要参数,单位为欧姆(Ω),为其传输高频信号电压和电流的比值(不是直流电压与电流的比值),特性阻抗与馈线的分布电阻R、电感L、漏电导G和电容C组合后的综合值有关,是由馈线诸如导体尺寸、导体间的距离以及电缆缘材料特性等物理参数决定的。同时与工作的射频频率相关,在高频段频率不断提高时,特性阻抗会渐近于固定值,如射频同轴电缆是50Ω。所以,一般要求馈线其特性阻抗Z要与设备、天线相匹配。下表3-2-3给出了短波常用明馈线(平行线)的特性阻抗情况。
表 3-2-3:短波常用明馈线特性阻抗
常用的馈线都有一定的传输损耗,不同馈线的损耗不同,在GB/T 9404标准中给出了同轴电缆馈线和椭圆波导馈线的每百米的衰减值;下表3-2-4给出了工作于行波状态的常用短波明馈线每百米的衰减值。和射频同轴电缆比较,损耗相对小,适合远距离馈电。缺点是不但存在天线效应,而且占地面积大、架设困难。因此短波新型天线和电台的射频接口,多采用50Ω同轴射频电缆。
表 3-2-4:常用短波明馈线的衰耗
欲进一步了解天线基本概念的请进入。