华容区高品质入户管道光缆厂家联系方式
光纤光缆的施工与接续技术
直埋敷设需保持0.8-1.2m埋深,弯曲半径大于20倍缆径。气吹敷设速度可达100m/min,适用微管(5/3.5mm)系统。熔接接续采用电弧放电技术,损耗<0.03dB,拉力强度>1Gbps。机械接续器(如SC型)插入损耗<0.5dB,适用于应急抢修。分布式传感系统可监测施工应力(精度±0.01%),防止微弯损耗。高海拔地区需采用低熔点纤膏(滴点-40℃),极寒环境使用抗冻缆膏防止开裂。
长途对称通信电缆由不同数量和不同缘结构的四线组构成。四线组的常用形式为星绞组,也有的采用复对绞形式。缘有纸带缘、纸-绳(纸带和纸绳)缘、聚乙烯绳-带缘、聚苯乙烯绳-带缘和泡沫聚乙烯缘等多种。高频长途对称通信电缆传输频率高,所以对电缆的结构性能要求较高。一般采用绳-带缘的星绞四线组结构。缘材料常用聚苯乙烯、聚乙烯。纸带纸绳缘一般用于252千赫以下的低频对称通信电缆。电话电缆是用于市内、近郊和工矿企业等较小范围的区域电话连接的对称通信电缆,常称市内电话电缆。其主要特点为对数多(多可达数千对,一般为数百或数十对)。由于使用频率低,通信距离近,因此线径较长途通信电缆细,一般为0.5毫米。电话电缆的线组结构有对绞组、星绞组和复对绞组3种。按其线心缘和护层材料可分为纸缘铅护套电缆、聚乙烯缘组合护层电缆、油膏充填防水电缆、全塑电缆等。电话电缆中二根缘导线心按一定节距绞合成对构成一个缘线对。线对中二根缘导线心的颜不同(一般为红和白),以便接线时区分。电话电缆的缆心结构一般分为同心式和单位式两种。同一层中相邻线对的绞合节距应不相同,以减小通话时的相互影响。在每一层中都设有一个标志对(分别为蓝和白),便于接线时辨认。在80对以上的电缆中往往置有预备线对以替换不合格线对。单位式电缆以50对或100对及相应的预备对绞合成一个基本单位,再由若干个基本单位绞合成电缆心。经干燥后挤压上护套制成电缆。
2行业标准............................................345.3企业标准............................................35
六、通信电缆的发展趋势.....................................36
6.1高速化..............................................37
HJVV通信电缆用途介绍
生产规格:对数2对—300对 导体直径为:0.4、0.5、0.6、0.7、0.8(mm)
电缆对数
型号(0.5)
5对
HJVV 5x2x0.5
HJVVP 5x2x0.5
10对
HJVV 10x2x0.5
HJVVP 10x2x0.5
20对
HJVV 20x2x0.5
HJVVP 20x2x0.5
30对
HJVV 30x2x0.5
HJVVP 30x2x0.5
50对
HJVV 50x2x0.5
HJVVP 50x2x0.5
100对
HJVV 100x2x0.5
HJVVP 100x2x0.5
200对
HJVV 200x2x0.5
HJVVP 200x2x0.5
300对
HJVV 300x2x0.5
HJVVP 300x2x0.5
HJVV通信电缆用途 通信电缆,HJVV通信电缆,电线电缆,电工电气,生产厂家
HJVV通信电缆用途
HJVV、HJVVP、HPVV通信电缆用途:主要用于传输音频、150kHZ及以下的模拟信号2048kbit/s及以下的数字信号。在一定条件下,也可用于传输2048kbit/s以上的数字信号。用作短距离的信号传输。(配线用)HJVV、HJVVP、HPVV通信电缆介绍:用于配线架至交换机或交换机内部各级机器间连接等(包括农村电话用),线路的始端和终端,供连接市内电话电缆至分线箱或配线架之用, 内导体线径(mm ):0.40 、0.50 、0.60 、0.70 、0.80 、0.90 对数(对):5—1000 HPVV低频通信配线电缆 配线电缆HPVV ZR-HPVV
华容区高品质入户管道光缆厂家联系方式
弱电布线施工是指在建筑物内进行的电缆、光缆等低电压信号线路的安装工作。在如今的智能化时代,弱电布线施工越来越受到重视。本文将全面解析弱电布线施工的注意事项和实用技巧,帮助大家地进行弱电布线施工。
(1)缆线的型号、规格应与设计规定相符.电缆线在各种环境中的敷设方式、布放问距均应符合设计要求。
(2)缆线的布放应自然平直,不得产生扭绞、打圈、接头等现象,应不受外力的挤压和损伤。
(3)缆线两端应贴有标签,应标明编号,标签书写应清晰正确标签应选用不易损坏的材料缆线应有余量,以适应终接、检测和变更对绞电缆预留长度:在工作区宜为3-6
(4)缆线的弯曲半径应符合下列规定:
1)非屏蔽4对对绞电缆的弯曲半径应至少为电缆外径的4倍。
2)屏蔽4对对绞电缆的弯曲半径应至少为电缆外径的8倍。
3)主干对绞电缆的弯曲半径应至少为电缆外径的10倍
4)2芯或4芯水平光缆的弯曲半径应大于25mm;其他芯数的水平光缆、主干光缆和室外光缆的弯曲半径应至少为光缆外径的1倍。
(5)缆线间的小净距应符合设计要求:
1)电源线、综合布线系统缆线应分隔布放,并应符合表3-6的规定
表3-6对绞电缆与电力电缆小净距
条 件
小净距/mm
380V, 5kVA
对绞电缆与电力电缆平行敷设
130
300
600
有-方在:接地的金属糟道或钢管中
70
150
300
双方均在接地的金属槽道或钢管中
10
80
150
注:1、当380V电力电缆<2kVA.双方都在接地的线槽中,且平行长度<10m时,小间班可为10mm。
2、双方都在接地的线槽中,系指两个不同的线槽,也可在同一线槽中用企属板隔开。
2)综合布线与配电箱、变电室、电梆机房、空调机房之间小净距宜符合表3-7的规定。
表3-7 综合布线电缆与其他机房小净距
名 称
小净距/m
名 称
小净距/m
配电箱
1
电梯机房
2
变电室
2
空调机房
2
3)建筑物内电、光缆暗管敷设与其他管线小净距见表3-8的规定
表3-8 综合布线缆线及管线与其他管线的间距
管线种类
平行净距/mm
垂直交叉净距/mm
避雷引下线
1000
300
保护地线
50
20
热力管(不包封)
500
500
热力管(包封)
300
300
给水管
150
20
煤气管
300
20
床缩空气管
150
20
4)综合布线缆线宜单独敷设,与其他弱电系统各子系统缆线间距应符合设计要求。
5)对于有保密要求的工程,综合布线缆线与信号线、电力线、接地线的间距应符合相应的保密规定对于具有保密要求的缆线应采取独立的金属管或金属线槽敷设。8屏蔽电缆的屏蔽层端到端应保持完好的导通性。
(6)缆线布放,在牵弓|过程中,吊挂缆线的支点相隔间距应不大于1.5rn。布放缆线的牵引车,应小于缆线允许张力的80%,对光缆瞬间大牵引力应不超过光缆允许的张力在以牵引方式敷设光缆时,主要牵引力应加在光缆的加强芯上,缆线布放过程中为避免张力和扭曲,应制作合格的牵引端头如果用机械牵引时,应根据缆线牵引的长度,布放环境,牵引张力等因素选用集中牵引或分散牵引等方式布放光缆时,光缆盘转动应与光缆布放同步,光缆牵引的速度一般为15m/s,光缆出盘处要保持松弛的孤度,并留有缓冲的余量,又不宜过多,避免光缆出现背扣。
(7)预埋线槽和暗管敷设缆线应符合下列规定:
1)管道内应无阻挡,管口应无毛刺,并安置牵引线或拉线
2)敷设线槽和暗管的两端宜用标志表示出编号等内容,
3)预埋线槽宜采用金属线槽,预埋或密封线槽的截面利用率应为30%〜50%,,
4)光缆与电缆同管敷设时,应在暗管内预置塑料子管.将光缆设子管子,使光缆和电缆分开布放,子管的内径应为光缆外径的1.5倍
5)敷设暗管宜采用钢管或阻燃聚氯乙烯硬质管布放大对数主干电缆及4芯以上光缆时,直线管道的管径利用率应为50%〜60%,弯管j苴应为40%〜50%,、暗管布放4对对绞电缆或4芯及以下光缆时,管道的截面利用率应为25%〜30%.预埋线槽宜采用金属线槽,线槽的截面利用率应不超过40%。
(8)设置缆线桥架和线槽敷设缆线应符合下列规定:
1)电缆桥架宜高出地面2.2m以上,槽盖开启面应保持80mm的垂直净空,桥架顶部距顶棚或其他障碍物应不小于300mm„桥架宽度不宜小于100mm,桥架内横断面的填充率应不超过50%,在吊顶内设置时,线槽截面利用率应不超过50%o
2)缆线桥架内缆线垂直敷设时,在缆线的上端和每间隔1.5m处应固定在桥架的支架上。
水平敷设时,直线部分间隔距离在3〜5m处设固定点.在缆线的距离首端、尾端、转弯中心点处300〜500mm处设置固定点。
3)在水平、垂直桥架中敷设缆线时,应对缆线进行绑扎对绞电缆、光缆及其他信号电缆应根据缆线的类别、数量、缆径、缆线芯数分束绑扎,绑扎间距不宜大于1.5m,间距应均匀,不宜绑扎过紧或使缆线受到挤压。
4) 布放线槽缆线可以不绑扎,槽内缆线应顺直,尽童不交叉、缆线不应溢出线槽,在缆线进出线槽部位,转变处应绑扎固定垂直线槽布放缆线应每间隔1.5m处固定在缆线支架上。
绑扎间距不宜大于1.5m,扣间距应均匀、松紧适度楼内光缆在桥架敞开敷设时应在绑扎固定段加装垫套 。
(9)建筑群子系统采用架空、管道、直埋、墙壁及暗管敷设电、光缆的施工技术要求应按照本地网通信线路工程验收的相关规定执行。
(10)桥架水平敷设时、吊(支)架间距一般为1.5〜3m,垂直敷设时固定在建筑物构体上的间距宜小于2m桥架及槽道安装位置左右偏差应不超过5()mm桥架及槽道水平度过每米偏差应不超过2mm,垂直桥架及槽道应与地面保持垂直,并无倾斜现象,垂直度偏差应不超过3mm。两槽道拼接处水平度偏差应不超过2mm吊(支)架安装应保持垂直平整,排列整齐,固定牢固,无歪斜现象,金属桥架及槽道节与节间应接触良好,安装牢固。
(11)沟槽和格形线槽沟通,沟槽盖板可开启,并与地面平齐,盖板和信息插座出口处应采取防水措施。
(12)配线设备机架安装要求。采用下走线方式、架底位置应与电缆上线孔相对应各直列垂直倾斜误差应不大于3mm,底座水平误差每平方米应不大F2mm接线端子各种标志应。
(13)顶棚内敷设缆线时,应考虑防火要求,缆线敷设应单独设置吊架,不得布放在顶棚吊架I:,宜放置在金属线槽内布线缆线护食应阻燃、缆线截面选用应符合设计要求
(14)在竖井内采用明配管、桥架、金属线槽等方式敷设缆线,并应符合以上有关条款要求,竖井内楼板孔洞周边应设置50mm的防水台,洞门用防火材料封堵严实。
(15)各类接线模块安装要求。模块设备应完整无损,安装就位、标志安装螺栓应拧牢固,面板应保持在一个水平面上。
(16)接地要求°安装机架,配线设备及金属钢管、槽道、接地体,保护接地导线截面、颜应符合设计要求,并保持良好的电气连接,压接处牢固。
缆线牵引是指采用一条拉线将缆线牵引穿入墙壁管道、吊顶和地板管道在施工中,应使拉线和缆线的连接点尽量平滑,因此,要采用电工胶带在连接点外面紧紧缠绕,以确保其平滑和牢靠,所用的方法取决于要完成作业的类型、缆线的质量、布线路由的难度,还与管道中要穿过的缆线数目有关,在已有缆线的拥挤的管道中穿线要比空管道难。
注意理论上,线的直径越小,则拉线的速度越快然而,有经验的安装者采取慢速而又平稳地拉线,因为拉线会造成线的缠绕或被绊住。
若拉力过大,将导致缆线变形,从而引起缆线传输性能下降。缆线大允许的拉力如下:
(1)一根4对线电缆,拉力为100N
(2)二根4对线电缆,拉力为150N
(3)三根4对线电缆,拉力为200N。
(4)n根线电缆,拉力为(nx50+50)N。
不管多少根线对电缆,大拉力都不能超过400N
1.牵引少量5类缆线
(1)少量的缆线很轻,只要将其对齐在80mm的裸线拨开塑料缘层,将铜导线平均分成两股,如图3-24所示
图3-24 留出裸线
(2)把两股铜导线相互打圈子结牢,如图3-25所示
图3-25 编织导线相互打固
(3)将拉线穿过已经打结的圈子后打活结(使越拉越紧)。
(4)用电工胶布紧紧地缠在绞好的接头上,扎紧使得导线不露出,并将胶布末端夹入缆线中。
2.牵引多对线数电缆
芯套/钩的连接是牢固的,它能够用于“几百对”的电缆上,应按下列程序进行。
(1)剥除约30cm的电缆护套,包括导线上两个金属绞线组的缘层。
(2)使用斜口钳将线切去,留下约12根(一打)
(3)将导线分成两个绞线组,如图3-26所示。
图 3-26将缆导线分成两个均匀的绞线组所示。
(4)将两组绞线交叉地穿过拉绳的环.在缆的那边建立一个闭环。
(5)将缆一端的线缠绕在一起以使环封闭,如图3-27所示。
(6)用电工带紧紧地缠绕在缆周围,覆盖长度约是环直径的3〜4倍,然后继续再绕上一段,如图3-28所示:
图3-27 用绞线继绕在自己上面的方法建立的芯套/钩来关闭缆环 图3-28 用电工带紧密缠绕
•小提示:较重的电缆上装一个牵引眼,在缆上制作一个环,使拉绳固定在它上面,对于没有牵引眼的电缆,可以使用一个分离的缆夹将夹子分开缠到缆上,在分离部分的每一半上有一个牵引眼当吊缆已经缠在缆上时,可同时牵引两个眼,使夹子紧紧地保持在缆上,用这种办法可以较好地保护好电缆的封头。
1.向上牵引缆线
向上牵引缆线可用电动牵引绞车J向上牵引缆线的主要步骤如下:
(1)按照缆线的质量,选定绞车型号,并按绞车制造厂家的说明书进行操作,先往绞车中穿一条绳子,启动绞车,并往下垂放一条拉绳,拉绳向下垂放直到安放缆线的底层。
(2)如果缆上有一个拉眼,则将绳子连接到此拉眼上。
(3)启动绞车,慢慢地将缆线通过各层的孔向上牵引,缆的末端到达顶层时,停止绞车。
(4)在地板孔边沿上用夹具将缆线固定。
(5)当连接制作好之后,从绞车上释放缆线的末端。
2.向下垂放缆线
向下垂放缆线的主要步骤如下:
(1)首先把缆线卷轴放到顶层,在离房子的开口处(孔洞处)3〜4m安装缆线卷轴,并从卷轴顶部馈线。
(2)在缆线卷轴处安排所需的布线施工人员,每层上要有一个人,以便引寻下垂的缆线。
(3)开始旋转卷轴,将缆线从卷轴上拉出,将拉出的缆线引导进竖井中的孔洞在此之前先在孔洞中安放一个塑料的套状保护物,以孔洞不光滑的边缘擦破缆线的外皮,如图3-29所示。
(4)慢慢地从卷轴上放缆并进入孔洞向下垂放,直到下一层布线施I:人员能将缆线引到下一个孔洞。
(5)按前面的步骤,继续慢慢地放线,并将缆线引入各层的孔洞“
若要经由一个大孔敷设垂直主「缆线,就无法使用一个塑料保护套K,这时好使用一个滑车轮,通过它来下垂布线,为此需要做如下操作:在孔的中心处装上一个滑车轮,将缆拉出绕在滑车轮上,按前面所介绍的方法牵引缆穿过每层的孔,当缆线到达目的地时,把每层上的缆线绕成卷放在架子上固定起来,等待以后的端接,如图3-30所示
图3-29用套状物保护缆线 图3-30 滑轮下放缆线方法示意图
管道布线是指在浇筑混凝土时已把管道预埋在地板中,管道内预先穿放着牵引电缆的钢丝或铁丝口。
(1)施工时,只需通过管道图样了解地板管道就可做出工方案。
(2)对于没有预埋管道的新建筑物,布线施工可以与建筑物装潢同步进行,以便于布线,而不影响建筑物的美观。
(3)对于老旧的建筑物或没有预埋管道的新建筑物,设计施工人员应向业主索取建筑物的图样,并到布线建筑物现场查清建筑物内电、水、气管路的布和走向,然后详细绘制布线图样,确定布线施工方案。
(4)水平子系统电缆宜穿钢管或沿金属桥架敷设,并应选择捷径的路径。
(5)管道通常从配线间埋到信息插座安装孔安装人员只要将4对线电缆固定在信息插座的拉线端,从管道的另一端牵引拉线就可将缆线送达配线间:,
(6)当缆线在吊顶内布放完成后、还要通过墙壁或墙柱的管道将缆线向下引至信息插座安装孔内将双绞线用胶带缠绕成紧密的一组,将其末端送入预埋在墙壁中的PVC圆管内井把它往下压,直到在插座孔处露出25〜30mm即可,也可以用拉线牵引。
水平布线常用的方法是在天花板吊顶内布线,具体施工步骤如下:
(1)索取施丁一图样,确定布线路由‘
(2)沿着所设计的路由在电缆桥架槽体下方打开吊顶,用双手推开每块镶板.
(3)为厂减轻多条4对线电缆的重量,减轻在吊顶上的压力,可使用J形钩、吊索及其他支撑物来支撑缆线.
(4)假设要布放24条4对线电缆.每个信息插座安装孔要放两条缆线,可将缆线箱放在一起亦使缆线出线口向上,24个缆线箱按图3-31所示方式分组安装,每组有6个缆线箱,共有4组。
图3-31 共布24条4对缆线,每一信息点布放两条4对的线
(5)在箱 上标注并且在缆线的末端注上标号。
(6)从离管理间远的一端开始,拉到管理间
水平子系统电缆在地板下的安装,应根据环境条件选用地下桥架布线法,蜂窝状地板布线法、高架(活动)地板布线法以及地板下管线布线法等四种安装方式。
在墙壁上的布线槽布线通常应按以下步骤进行:
(1)确定布线路由。
(2)沿着路由方向放线讲究直线美观.
(3)线槽每隔Im要安装固定螺钉.
(4)布线时线槽容量为70%。
(5)盖塑料槽盖应错位盖好。
(1)尼龙扎带。适合综合布线工程中使用的尼龙扎带,具有防火、耐酸、耐蚀、缘性良好、耐久和不易老化等特点,使用时只需将带身轻轻穿过带孔一拉,即可牢牢扣住线把。扎带使用时也可用专门工具,它使得扎带的安装使用为简单省力。使用扎带时要注意不能勒得太紧,避免造成电缆内部参数的改变。
(2)钢钉线卡。钢钉线卡全称为塑料堂忽缎水泥钉钢钉电线卡,用于明敷电线、护套线、电话线、闭路电视线及双绞线仁塑料钢钉电线卡外形如图3-32所示。在敷设缆线时,塑料钢钉电线卡用塑料卡卡住缆线,用锤子将水泥钉钉入建筑物即可。管线或电缆水平敷设时,钉子要钉在水平管线的下边,让钉子可以承受电缆的部分重力.垂直敷设时钉子要均匀地钉在管线的两边,这样可起到夹住电缆的定位作用。
图3-32塑料钢钉电线卡
(3)线扣,线扣用于将扎带或缆线等进行固定,分粘贴型线扣和非粘贴型线扣。
(1)缆线终端一般要求:
1)缆线中间不得接头,缆线终端处卡接牢固、接触良好。
2)缆线在终接前,核对缆线标识内容是否正确。
3)缆线在终接前,对绞电缆与插接件连接应认准线号、线位标,不得颠倒和错接。
4)缆线终端应符合设计和厂家安装手册要求。
(2)对绞电缆终接应符合下列要求:
1) 对绞线与8位模块式通用插座相连时,按标和线对顺序进行卡接。插座类型、标和编号应符合图3-33的规定。两种连接方式均可采用,但在同一布线工程中两种连接方式不应混合使用。
图3-33 8位模块式通用插座连接示意图
2) 终接时,每对对绞线应保持扭绞状态,扭绞松开长度对于3类电缆应不大于75mm;对于5类电缆应不大于13mm;对于6类电缆应尽量保持扭绞状态,减小扭绞松开长度。
3) 对不同的屏蔽对绞线或屏蔽电缆,屏蔽层应采用不同的端接方法应对编织层或金属箔与汇流导线进行有效的端接。
4)7类布线系统采用非刚45º方式终接时,连接图应符合相关标准规定。
5)每个2EL86面板底盒宜终接2条对绞电缆或I根2芯/4芯光缆,不宜兼作过路盒使用。
6)屏蔽对绞电缆的屏蔽层与连接器件终接处屏蔽罩应通过紧固器件接触,缆线屏蔽层应与连接器件屏蔽罩360。圆周接触,接触长度不宜小于10rnmo屏蔽层不应用于受力的场合。
( 3)光缆终接与接续应采用下列方式:
1)光纤与光纤接续可采用熔接和光连接子(机械)连接方式。
2)光纤与连接器件连接可采用尾纤熔接、现场研磨和机械连接方式。
(4)光缆芯线终接应符合下列要求:
1)光纤连接盘面板应有标志。
2)采用光纤连接盘对光纤进行连接、保护,在连接盘中光纤的弯曲半径应符合安装工艺要求。
3)光纤连接损耗值,应符合表3-9的规定。
表3-9光纤连接损耗值(dB)
连接类别
多
模
单
模
平均值
大值
平均值
大值
熔接
0. 15
0.3
0. 15
0.3
机械连接
(0.3
0.3
4)光纤熔接处应加以保护和固定。
(5)各类跳线的终接应符合下列规定:
1)各类跳线长度应符合设计要求。
2)各类跳线缆线和连接器件间接触应良好,接线无误,标志;跳线选用类型应符合系统设计要求。
(1)安装在地面上或活动地板上的地面信息插座,是由接线盒体和插座面板两部分组成.插座面板有直立式(面板与地面成45。,可以倒下成平面)、水平式等。缆线连接固定在接线盒体内的装置上,接线盒体均埋在地面下,其盒盖面与地面平齐,可以开启,要求有严密防水、防尘和抗压功能。在不使用时,插座面板与地面齐平,不得影响人们的日常行动。
地面信息插座的各种安装方法示意如图3-34所示
(2)安装在墙上的信息插座,其位置宜高出地面300mm左右。*房间地面采用活动地板时,信息插座高出活动地板地面300nun墙上信息插座的安装示意图如图3-35所示。
(3)信息插座的具体数量和装设位置以及规格型号应根据设计中的规定来配备和确定。
(4)信息插座底座的固定方法应以现场施工的具体条件来定,可以采用扩张螺钉、射钉或一般螺钉等安装,安装牢固,不应有松动现象。
(5)信息插座应有明显的标志,可以采用颜、图形和文字符号来表示所接终端设备的类型,以便于使用时的区分,以免造成混淆。
(6)在新建的智能建筑中,信息插座宜与暗敷管路系统配合,信息插座盒体采用暗装方式,在墙壁上预留洞孔,将盒体埋设在墙内,综合布线施工时,只需加装接线模块和插座面板。
信息插座和电缆连接可以按照T568B标准或T568A(ISDN)标准接线,其引针和线对安排如图3-36所示。在同一个工程中,只能有一种连接方式。否则,就应标注清楚。
图3-34 地面插座的安装方法
图3-35墙上信息插座的安装示意图 图3-36 8位模块式通用插座连接
G一绿;BL-蓝;BR-棕:W-白:O一橙
如图3-37所示为信息插座模块的正视图、侧视图、立体图
图3-37信息插座模块图
(a)正视图;(b)侧视图;(r)立体图
(1)双绞线在与信息插座模块连接时,按标和线对顺序进行卡接。插座类型、标以及编号均应符合规定。
(2)信息插座与插头的8根针状金属片,属于弹性连接,且有锁定装置,一旦插入连接,很难宜接拔出,解锁后才能顺利拔出由于弹簧片的摩擦作用,电接触随插头的插人而得到进一步加强。
(3)标准提出信息插座应具有45。斜面,并具有防尘、防潮护板功能同时信息出口应有明确的标记,面板应符合86系列标准
(4)双绞电缆与信息插座的卡接端子连接时,应按标要求的顺序进行卡接。
(5)双绞电缆与接线模块(IDC、KJ-45)卡接时,应按设计和厂家规定进行操作。
(6)屏蔽双绞电缆的屏蔽层与连接硬件端接处屏蔽罩保持良好接触缆线屏蔽层应与连接硬件屏蔽罩360。圆周接触,接触长度不宜小于10mm。
(7)信息插座在正常情况卜,具有较小的衰减和近端申扰以及插入电阻"如果连接不好,可能要增加链路衰减及近端串扰所以,安装和维护综合布线的人员,行严格培训,掌握安装技能。
(8)连接4对双绞电缆到墙上安装的信息插座的安装步骤如下:
1)将信息插座上的螺钉拧开,然后将端接夹拉出来拿开。
2)从墙上的信息插座安装孔中将双绞线拉出20cm。
3)用扁口钳从双绞线上剥除长的外护套。
4)将导线穿过信息插座底部的孔。
5)将导线压到合适的槽中去。
6)使用扁口钳将导线的末端割断。
7)将端接夹放回,并用拇指稳稳地压下。
8)重新组装信息插座,将分开的盖和底座扣在一起,再将将连接螺钉拧上。
9)将组装好的信息插座放到墙上。
10)将螺钉拧到接线盒上,以便固定。
用此法也可将4对双绞电缆连接到掩埋型的信息插座上,然而,电气盒在安装前应已装好。
如图3-38所示,在一个配线板上端接电缆的基本步骤如下:
图3-38配线板端接的步骤
(1)在端接缆线之前,首先整理缆线。松弛地将缆线捆扎在配线板的任一边上,好是捆到垂直通道的托架上。
(2)以对角线的形式将固定柱环插到一个配线板孔中去。
(3)设置固定柱环,以便柱环挂住并向下形成一定角度从而有助于缆线的端接插入。
(4)将缆线放到固定柱环的线槽中去,并按照前面模块化连接器的安装过程对其进行端接。
(5)一步是旋转固定柱环,完成此匚作时注意合适的方向,以避免将缆线缠绕到固定柱环上。
1、GB200使用铜缆线背板引关注,铜互联在AI Scaleup场景成为通信方式性价比解。在2024 GTC大会上发布GB200芯片并推出基于GB200的NVL72机柜,高速铜缆互联主要应用场景正是B200芯片与NVLink Switch的互联。NVL72主要通过GPU背板连接器到线背板再到交换芯片的跳线完成互联,而NVL36*2由于要实现两台NVL36的互联,将需要额外的162根1.6T ACC电缆互联。除英伟达外,dojo、TPU均使用了定制铜缆或DAC&AEC作为短距互联方案。在AI Scaleup互联域,铜缆是机柜内、机柜间短距互联的性价比佳方案。
2、我们预计2025年由GB200带来的高速铜缆新增市场近60亿美元,高速铜缆使用场景不断延伸。在GTC2024上介绍,NVL72使用铜缆互联较光模块节省了6倍成本。NVL72需要5184根高速差分对铜缆,该铜缆需要从compute tray的背板连接到Switch tray的背板,再从Switch tray的背板连接到NVLINK Switch芯片,我们测算NVL72机柜的高速铜缆价值量合计11.7万美金,而NVL36价值量合计10.4万美金,根据Trendforce,2025年GB200机柜出货有望达到6万台,则2025年GB200机柜铜缆新增市场达到约64亿美元。
3、高速铜互联组件竞争格集中,上游线材和连接器具有壁垒。GB200以组件形式销售背板线模组、近芯片跳线以及外部IO线,高速线材和连接器作为重要原材料可能选择外采或代工方式。在GB200机柜里,背板线模组cartridge、NVSwitch OverPass&Densilink、PCIE、ACC分别对应的是高速铜缆背板互联、芯片飞线、服务器内部线、外部IO线场景。高速铜缆线材需要材料处理、缘、编织、组件组装等工序,其制造具有设备和工艺壁垒。高速连接器技术、专利壁垒高,在25Gbps以上高速连接器领域,具有一家独大、泰科、莫仕两强相随面。由于高速铜互连组件话语权主要集中在连接器领域,连接器相对的竞争格基本顺延到组件市场。
4、聚焦上游配套,关注国产算力方案。由于与英伟达的联合研发以及对核心专利的掌握,GB200高速铜连接价值量前期或主要集中于以为代表的连接器巨头厂商。国内对于224G高速铜线、IO CAGE等高速产品配套需求将增加,对于中低端产品线产能原因外包需求也将外溢。另外,高速铜连接市场有望从英伟达引领扩散到海外UALINK和国产算力配套,铜连接有望“”光模块行情,实现2025年需求爆发式增长。
建议关注:拥有高速铜连接全套解决方案的、高速线材领军者、专注同轴电缆产品的、聚焦服务器内部线的、通讯汽车双轮驱动的、国内数据通信组件和布线领先企业、高速背板连接器国产替代先锋、数据中心高速组件成长的等。
风险提示:对于高速铜缆价值量预期过于乐观风险,GB200机柜量产进度延后导致相关公司订单落地和业绩释放不及预期,相关公司设备或良率瓶颈导致产能释放不及预期风险,原材料成本上涨、良率低导致毛利率不及预期风险,竞争格恶化风险,技术路线不确定风险。
【GB200带动高速铜连接爆发,AI Scaleup高速铜缆性价比】
GB200使用铜缆线背板互联引关注,高速铜互联在AI柜内场景已具有成熟经验
GB200 NVL72通过NVLINK5将72个B200组成一个“GPU”。英伟达在2024GTC大会上发布GB200芯片以及NVL72机柜,通过高速铜缆互联形如一颗GPU。具体来看,每个NVL72机柜由18个compute tray和9个NVLINK Switch tray组成,每个compute tray包括2颗GB200芯片,每颗GB200芯片由2颗B200 GPU和一颗Grace CPU通过NVLINK C2C(单向450GB/s)连接而成。而每台NVLINK Switch则由两颗NVLink Switch4芯片组成,交换带宽为28.8Tb/s*2。每颗B200芯片通过NVLink5共900GB/s单向带宽(共36*224G SERDES)分别连接到18颗NVLink Switch4,而高速铜缆互联主要应用的场景正是B200芯片与NVLink Switch的互联。此外,每颗B200均配置了CX7或CX8网卡,通过400Gb或800Gb IB网络scaleout互联,对应每台compute tray 2个OSFP 800G或1.6T端口。
图1:GB200 NVL72系统架构
资料来源:Semianalysis,研究所
NVL72的高速铜连接架构设计。NVL72使用一层NVSwitch交换架构连接了72颗B200,这主要通过背板连接器到线背板再到交换芯片的跳线完成。根据Semianalysis的分析,每个Blackwell GPU都连接到一个Paladin HD 224G连接器,每个连接器有72个差分对(对应每颗B200 900GB/s*8*2的NVLINK收发带宽),连接到背板Paladin连接器后接下来使用了SkewClear EXD Gen2电缆背板连接到Switch tray的Paladin HD背板连接器(每个连接器有144个差分对),再通过OverPass跳线电缆连接到NVSwitch芯片。
图2:GB200 NVL72 NVLINK互联网络架构
资料来源:Semianalysis,研究所
图3:NVL72 overpass和背板连接示意图
资料来源:Semianalysis,研究所
因此实际上GB200 NVL72使用了定制的高密度背板连接器和线背板模组来解决72颗B200与18颗NVLink Switch的机柜内互联,而为了解决Switch tray上PCB密集高频信号的串扰问题,还使用了OverPass近芯片跳线连接到背板。
图4:NVL72机柜背部使用了密集的线背板互联
资料来源:servethehome,研究所
图5:NVL72 NVSwitch Tray使用了OverPass跳线(图中蓝线)
资料来源:servethehome,研究所
NVL36*2的高速铜连接架构设计。对于NVL36*2的定位是满足某些机柜功率、风冷散热有限制条件的客户需求,NVL36机柜的大区别一是同样配置了9个Switch tray(18颗NVLink Switch4芯片),相当于交换容量翻倍,二是是使用了可扩展的NVLINK Switch tray,两台NVL36机柜之间通过短距ACC铜缆互联。对于线背板和交换芯片跳线,NVL36采用了与NVL72相同的设计,相应的由于GPU数量减半,线背板和OverPass使用的电缆数量也近乎减半。但由于要实现两台NVL36的互联,每套NVL36*2系统将需要额外的162根1.6T ACC电缆互联,而为了将NVLINK Switch一半的带宽连接到前面板,英伟达还使用了的Densilink跳线产品,因此NVL36*2整体上跳线的用量是较NVL72基本相当的。
图6:GB200 NVL36互联网络架构
资料来源:Semianalysis,研究所
图7:两个NVL36机柜通过柜外线ACC连接
资料来源:Semianalysis,研究所
除外,高速铜互联在AI短距离场景已有成熟经验,dojo/等均使用定制铜缆或DAC&AEC作为短距互联方案。以谷歌为例,其TPUv4服务器设计TPU和CPU板卡是分开的,使用PCIE外部线进行连接而在TPU互联域,谷歌使用的是3D torus网络架构,每颗TPUv4具有6*50GB/s ICI带宽,其中2条ICI链路在tray内通过PCB互联,3条链路使用400G DAC铜缆在机柜内与其他TPU tray互联,剩余1条链路通过400G FR4光模块连接OCS光交换机。自研芯片dojo机柜的设计则更加独树一帜,其基本芯片单元为D1芯片,25个D1芯片组成一个Training Tile,12个Training Tile组成一个服务器机柜,算力达109PFlops。为实现Training Tile之间的高速互联,特斯拉定制了通信协议,每片Tile的每一边通过10个900GB/s定制连接器和线缆组件实现9TB/s的超大带宽。
图8:在TPUv4机柜中使用铜缆进行ICI机柜内互联(图中红部分)
资料来源:《A Machine Learning Supercomputer with an Optically Reconfigurable Interconnect and Embeddings Support》,研究所
图9:Dojo training tile之间通信采用定制连接器和组件实现每边9TB/s的高速率
资料来源:Semianalysis,研究所
铜缆是AI高速高密度场景下当前通信性价比解
聚焦铜互联:铜互联主要应用于芯片间互联及柜内互联等等短距离场景,传输距离通常在10米及以下。铜互连指的是主要使用铜作为材料的电信号通信方式(因其导电导热性能好,可塑性强),因此其涵义其实包括了芯片内互联走线(在芯片制造时实现)、芯片间(chiplet)走线(通常在基板上完成)、模组间走线(在PCB上完成)、PCB板间通信(一般通过背板、连接器或铜缆完成)以及机框之间通信(一般通过铜缆或光模块)。
图10:铜互联应用场景示意图
资料来源:OIF,研究所
图11:铜连接不同场景的典型距离
资料来源:OIF,研究所
在224Gbps速率下, cable(铜缆)是SERDES LR(米级)建议的电信号通信方式。随传输速率增加,传统PCB信号衰减程度提升,采用增加层数和更换新型材料则会使成本明显提升,因此cable传输代替PCB成为有效解决方案。如图13所示,横轴代表信号频率,纵轴代表信号强度(dB负值越大衰减越严重),PCB信号(红、粉、黄)的下降斜率较cable(绿、蓝)陡峭的多。根据OIF对SERDES LR的测试数据,在224G速率下,cable可传输1米,是建议的通信手段。
图12:不同速率的SERDES-LR在cable的传输距离
资料来源:OIF,研究所
图13:PCB的高频衰减曲线较cable陡峭许多
资料来源:connectorsupplier,研究所
AI Scaleup需要怎样的通信技术?综合考虑距离、功耗、密度、串扰、成本。Scaleup指的是使用统一物理地址空间将多GPU组成一个“GPU”节点,随着大模型参数的提升,扩大Scaleup域有助于张量并行效率更高,并且简化了AI算法编程。NVLINK是GPU实现Scaleup的主要通信方式,其通过NVLINK Switch实现节点内高速交换。NVLINK Switch 3高连接8枚GPU,而NVLINK Switch 4多可扩展576个,GB200 NVL72、NVL36*2的Scaleup域为72个GPU。在8颗GPU互联时,NVLINK主要通过PCB进行intra-board通信,距离通常在1米内;而72颗GPU互联达到了intra-rack、相邻rack通信,距离通常在1米至5米,因此距离成为GB200选择铜缆互联的主要因素。除此之外,与光通信(AOC、CPO)对比,根据TheNextPlatform报告,铜缆的cost成本仅为AOC的十分之一,虽然CPO在功耗、密度、距离都更有潜在优势,但当前产业链还不成熟,其对客户机房改造、服务器设计等“潜在成本”是要高出不少的。
图14:不同通信手段功耗、成本、密度、距离对比
资料来源:TheNextPlatform,研究所
图15:不同距离的通信场景适用的通信手段
资料来源:Cadence,研究所
铜缆互联是NVL72&36机柜内、机柜间短距互联的性价比佳方案。GB200机柜compute tray与Switch tray之间的传输距离约为0.5-1米,使用了定制化的线背板模组cartridge结合高密度背板连接器来实现背板的互联,较PCB可行度更高、较光模块成本更低。而在Switch tray交换芯片到背板、前面板英伟达则使用了的OverPass、Densilink近芯片跳线方案,以避免PCB可能出现的高频信号串扰、信号衰减过快问题。在NVL36相邻机柜间,英伟达或选择有源铜缆ACC方案,较光模块成本更低、功耗更低。
GB200高速铜缆市场分析:预计2025年高速铜缆新增市场近60亿美元
我们看到目前市场主要使用两种方式测算NVL72内部线单机柜价值量,且可以相互验。
一是根据在GTC2024上的介绍,NVL72使用铜缆互联较光模块节省了6倍的成本。我们首先计算采用光模块需要的采购成本:
B200单GPU NVLINK IO带宽为1800GB/s双向,即900GB/s(相当于7200Gb/s)单向,如果采用800Gb/s多模光模块需要9*2=18只(收发各一个连接compute tray和Switch tray),NVL72需要72*18=1296只光模块。根据帕米尔研究的报告,800G多模当前的市场ASP在430美金左右,故NVL72需要的800G光模块成本为55.7万美元。与此对比,铜缆互联的成本预计在六分之一的9.3万美元左右。
二是根据高速铜缆的量价关系测算。
1)单颗B200芯片的单向IO带宽为7200Gb/s,如果采用200Gb/s的高速差分铜线收发共需要72根,故NVL72需要5184根高速差分铜线。
2)该高速铜线需要从compute tray的背板连接到Switch tray的背板(平均距离0.5-1.5米),再从Switch tray背板连接到NVLINK Switch芯片(平均距离0.5米),因此若计算端到端单根铜线的平均长度在1.5米左右。NVL72需要约7800米的铜线。
3)价格方面,Lightcounting在《High speed cables,linear drive and co-packaged optics》报告中给出的1.6T DAC和AEC 2025年的ASP分别为259美金和405美金,我们假设1.6T ACC 的ASP折中为330美金。假设1.6T ACC平均长度1.5米,由于单根ACC包括了16根200Gb/s单通道裸线,单根200Gb/s铜线每米的价格约为13.8美金。
4)以上铜线价格为组件层面,包括了连接器、结构件以及毛利润,我们假设内部线成本结构与之类似,可得到NVL72机柜内部线组件的价值约10.7万美金。且若根据距离来判断,其中背板和跳线的铜线价值量约2:1关系。
对于NVL36机柜,其包括了内部线和相邻机柜连接的1.6T ACC。主要变化为compute tray数量减半,但Switch tray数量相等。按照以上量价测算法,得到NVL36内部线铜缆长度为5184米左右,价值量约7.2万美金。
外部线ACC部分。NLV36 Switch tray包括两颗28.8Tb/s交换容量的芯片,一半带宽用于相邻机柜连接,故Switch tray前面板的IO带宽为28.8Tb/s,如果采用1.6T端口,需要18个,即2*NVL36系统需要162条1.6T ACC铜缆,其价值量约为5.3万美金。
此外,仍有短距scaleout网络使用到DAC&ACC。根据Semianalysis的测算,ACC、DAC还会用于InfiniBand网络compute tray与柜顶交换机的互联以及带外管理网络compute tray与管理交换机的互联,在NVL36*2 CX-8配置下,这些价值量合计1.02万美元。
总结:根据以上测算,NVL72机柜的高速铜缆合计11.7万美金,而NVL36机柜的价值合计10.4万美金。根据Trendforce,2025年GB200机柜合并出货有望达到6万台,其中NVL36可能达到5万台。以此为核心假设根据以上价值量测算,我们得到2025年GB200机柜的铜缆市场将达到约64亿美元。
【高速铜缆市场:使用场景不断延伸,产业链上下游涉及多环节】
高速铜缆使用场景,市场空间广阔
高速铜缆组件由线材和连接器组成。以组件形式销售背板线模组、近芯片跳线以及外部IO DAC&ACC,高速线材和连接器作为重要原材料可能选择外采或代工方式。根据招股书,高速线缆组件产品工序包括外购线材、智能裁切、电子布线、导线端头处理、与自制的连接器端接、灌封、包装处理。高速线模组作为新兴的高速铜连接产品,工艺壁垒较高,以华丰科技的产品为例,工序合计达到1000道以上,焊点平均6000个以上,每个焊点均需性测试,且位置精度控制在±0.005mm,每个工序良率在99%以上。
图16:高速线缆组件产品制造流程
资料来源:招股书,研究所
图17:金属材料、线材是2022年原材料BOM采购的重要组成部分
资料来源:招股书,研究所
分应用场景来看,铜互联应用场景主要有芯片直出跳线overpass、服务器内部线、背板互联线和机柜外部线。具体来看,高速跳线overpass可解决数据量激增及带宽更高时面临的传输问题,可实现AISC与背板、ASIC与IO接口及芯片之间的互连,芯片跳线主要包括C2B(芯片对背板)线、C2C(芯片对芯片)线、C2F(芯片对前面板)线;服务器内部线主要包括MCIO线、PCIE线及SAS线等等;机柜内高速背板互连指背板和单板之间通过裸线进行互连,机柜外部通过高速铜缆ACC连接到服务器SFP/QSFP等IO端口,再通过服务器内部跳线进行数输,或实现机柜与机柜之间的互联。
在GB200机柜里,背板线模组cartridge、NVSwitch overpass&densilink、PCIE、ACC即分别对应的是高速铜缆背板互联、芯片飞线、服务器内部线、外部IO线场景。GB200系列成为高速铜互连经典系统的使用场景,也成为大的增量市场。我们尝试分别计算高速铜互联四种场景的市场空间(组件层面):
1)高速线背板:根据Business Research报告,背板连接器市场2021年市场规模为19.4亿美元,但主要为板间高密度连接器互连方式,线背板模组将主要用于AI服务器机柜、高速框式交换机、路由器等。若按照2025年5万台NVL36+1万台NVL72机柜,参照我们上文单机柜线背板价值量测算,将新增25亿美元市场。
2)近芯片跳线:其使用有两种场景,一是在服务器、网络设备SERDES速率达到112G以上时PCB传输距离和性能不满足要求;二是某些结构紧凑的服务器、网络设备设计时用于节省PCB面积,充分利用空间。目前市场缺乏相关统计数据,参考我们上文的价值量测算,按照2025年5万台NVL36+1万台NVL72机柜,将新增21.6亿美元市场。
3)服务器内部线:广泛应用于通用服务器、AI服务器中存储、网卡、GPU卡与PCIE总线的互联。根据trendforce,2023年服务器出货量1443万台,按照平均每台服务器2路CPU,每路CPU使用一条PCIE4.0*16连接线,单跟价格200元(参考技嘉PCIE4.0*16显卡延长线)计算,2023年服务器内部线市场规模在8亿美元左右。
4)外部IO线:根据LightCounting,2023年DAC&ACC市场规模为4.4亿美元,按照上文2*NVL36需要DAC&ACC 5.3万美金,2025年5万台NVL36计算,将新增13.4亿美元市场。
图18:铜互联高速通信线类型
资料来源:安费诺,TE,samtec,山西券研究所
外部线可进一步分类为无源DAC、有源 ACC(Active Copper Cable)和 AEC(Active Electrical Cable),功耗均低于AOC。以400G为例,无源DAC使用导电铜线在两端之间直接连接,不包括有源元件,因此成本,传输距离不超过3米,主要用于系统内机架连接,功耗也;有源铜缆(ACC)在电缆内部添加了有源信号驱动器或均衡器芯片,可以补偿铜传输造成的部分损耗,因此传输距离可达DAC的2到3倍,功耗也随之增加;有源电缆 (AEC)在电缆内部包含retimer,可以在传输开始和结束时清理、去除噪声并放大信号,因此传输距离可达近10米,功耗也高于ACC,但仍低于有源光缆AOC。根据LightCounting的预测,2024年后DAC和AEC的市场增速远高于AOC,2028年AOC+DAC+AEC市场将超过25亿美元。其中由于AI集群建设对800G、1.6T有源铜缆的需求激增,2025年后800G AEC需求增长,2026年后1.6T AEC需求增长。
表1:AOC、DAC与AEC比较
资料来源:九州互联科技,山西券研究所
图19:LightCounting预测DAC和AEC市场将稳步增长
资料来源:LightCounting,山西券研究所
图20:LightCounting预测AI将给800G、1.6T AEC带来爆发式增长
资料来源:LightCounting,山西券研究所
高速铜缆线材:高速线材具有设备和工艺壁垒
从高速通信线制造环节拆分来看,1)材料处理:合金铜线经过拉丝工艺变成细铜线,其中核心原材料是高纯度铜材(主要供应商有博威合金、威兰德等),决定了电缆的导电性能,再通过电镀/化学镀银等方式形成镀银线(主要供应商有恒丰特导等);2)缘:镀银铜线经过挤塑缘、编织、挤塑护套、成圈包装等流程形成芯线(多数为线材厂商内部完成),其中护套材料根据民品/军品要求不同使用材料不同。一般来说单根芯线可由数根至十根以上不等数量的镀银铜线绞合而成,而对于高速数据通信芯线而言,通常由一对差分线组成;3)编织:芯线经由缘押出、平行对绕包、编织、挤塑护套等环节形成成品线材(主要供应商有安费诺、乐庭智联、安澜万锦、神宇股份、景弘盛、蓝原科技等),至此完成线材制作;4)组件组装:成品线材加上连接器可成为完整线束产品,即我们提到的高速铜互联组件,用于不同互联方案,主要供应商有安费诺、泰科、莫仕、立讯、兆龙、金信诺、华丰等厂商。
图21:同轴电缆制作过程
资料来源:神宇股份招股书,山西券研究所
不同环节设备和材料对芯线到线材制作有重要影响,具体来看:
1)缘芯线压出:缘材料对成品性能有大的影响,目前主要有PP、FEP、铁氟龙、FEP发泡、铁氟龙发泡材料等,对于PCIE6.0以上高速传输材料缘材料普遍使用发泡材料。对于缘工序来讲,需要严格控制的是缘外径、同心度、椭圆度以及电容等。2)平行对绕包:即将2根缘芯线及地线集合在一起,同时在外面包上一层铝箔或铜箔麦拉和一层自粘聚酯带,过程将影响线材的阻抗、延时差、衰减等;绕包工序中铝箔&铜箔的厚度和重叠率要严格控制,同时聚酯带绕包的方向应于铝箔&铜箔相反,同时对自粘聚酯带的加热温度也要控制。此外,平行绕包线弯曲性能差,还应尽量避免弯折,尽量做到伏贴和保护芯线。;3)线材编织:通过编织机在成缆芯线外面编上一层金属屏蔽网,以增强线材的屏蔽效果,过程中需对线材的收放线张力及排线等进行控制;4)线材外被压出:通过压出机在编织或成缆线材外面押上一层聚烯烃材料被覆 ,对线材加以保护,过程中需对张力及排线、押出方式等进行控制。
图22:罗森泰的高性能挤出机系列
资料来源:罗森泰官网,山西券研究所
图23:东莞冠博机电生产的细电线编织机
资料来源:冠博机电官网,山西券研究所
铜互连高速连接器:技术和专利壁垒高,市场份额集中在欧美巨头
数据中心连接器为通信连接器市场里高速成长的分支。根据bishop&associates,2022年连接器市场规模为841亿美元,其中通信为占比大的细分市场。通信连接器包括无线射频连接器、微波连接器、背板连接器、板对板连接器、线对板连接器等,主要应用在电信和数据中心两大市场。由于发达国家5G建设的阶段性放缓、传输网建设的周期性等因素,通信市场表现平缓,而以大模型为代表的AI算力建设2024年后驱动科技企业数据中心资本开支大幅提升,且主要用于AI服务器采购,数据中心成为通信连接器市场增速快的赛道。
图24:连接器市场规模
资料来源:方向电子招股书援引bishop&associates,山西券研究所
图25:2022年连接器应用领域分布
资料来源:方向电子招股书援引bishop&associates,山西券研究所
GB200高速铜连接中主要涉及到的是IO CAGE、背板连接器、近芯片连接器等。GB200机柜对于高速连接器的用量提升显著,其中800G、1.6T IO CAGE用于和光模块&ACC对插的端口,尤其是1.6T IO CAGE单通道速率提升至224Gbps,对于高频高速防串扰设计成为难点。而背板连接器、近芯片连接器目前代表性的是安费诺的Paladin、OverPass系列,此类连接器的特点是超高速信号以及大电流密集传输,pin脚密集,对于连接器制造的精度、一致性、电镀处理难度大。
图26:NVL72 NVLINK高速铜互联使用的连接器种类和数量
资料来源:Semianalysis,山西券研究所
图27:NVL36*2 NVLINK高速铜互联使用的连接器种类和数量
资料来源:Semianalysis,山西券研究所
高速高密度连接器技术、专利壁垒高,市场份额高度集中。根据华丰科技《IPO首轮问询回复意见》,通讯高速连接器的关键工序和核心环节包括磨具设计与制造、塑压成型、冲压成型、玻璃密封连接器烧结、壳体类零件机加工、接触件零件机加工、表面处理、接触件制造、零件热处理、接触簧片的自动连续塑封、自动装配和检测、模块化&无缆化产品装联等细节,核心包括成型精度、精度一致性、表面镀膜一致性、接触件使用寿命、接触件应力、热性能等等。根据中国工程咨询有限公司的《重点电子元器件研究报告(缩写版)》,在25Gbps及以上高速连接器领域,泰科、安费诺、莫仕三大美国巨头通过、相互授权专利长期处于,形成“一家独大两强相随”面。其中25Gbps连接器市场安费诺、莫仕、申泰、泰科分别占比72%、20%、3%、5%;56Gbps连接器市场安费诺、莫仕、申泰、泰科分别占比60%、28%、10%、2%。
高速铜互联组件:竞争格相对集中,国产替代具有空间
由于高速铜互联组件厂商的话语权主要集中在连接器领域,因此连接器的竞争格基本顺延到组件市场,国内厂商仍有替代空间。根据QYReasearch《高速直连铜(DAC)电缆市场研究报告2023-2029》,外部IO组件DAC,目前主要供应商包括安费诺、molex、泰科、Juniper、Volex、英伟达、泛达、博迈立铖、佳必琪、立讯等。2022 年前十强厂商占有大约 69.0%的市场份额,其中安费诺为主要供应商,份额领先;国内厂商主要包括立讯精密、兆龙互联、金信诺等。而对于高速背板领域,根据华丰科技招股书,安费诺、泰科、莫仕占据较大市场份额,国内逐渐形成了以华丰、庆虹、中航光电为主的格。对于近芯片跳线领域,我们认为安费诺在处于对领先,海外samtec、泰科,国内立讯精密、华丰科技等处于挑战者。,服务器内部线领域,竞争格相对分散,海外玩家主要是安费诺、泰科、molex、Volex、samtec,国内玩家包括立讯精密、鸿腾精密、兆龙互连、金信诺等。
高速铜连接市场有望从英伟达引领扩散到海外 UALINK 和国产配套,铜连接作为Blackwell 显著的增量产品有望“”光模块行情,2025 年市场需求或爆发增长。NVL72的意义在于引领scaleup通信技术发展,海外 UALINK 以及国内智算集群均有望跟进。今年5月底,英特尔、AMD、博通、思科、谷歌、HPE、Meta 和微软宣布建立 UALink 推广工作组,以指导数据中心AI 加速器芯片之间连接组件的发展,希望未来可以取代 NVLink 接口。UALink 1.0 规范将支持多达1024个加速器内存统一互联,虽具体实现方式仍未知,我们认为高速铜缆架构不失为成熟的解决方案。国内方面,中国移动编制的《面向超万卡集群的新型智算技术白皮书》倡议加速推进超越 8 卡的超节点形态服务器,优化 GPU 卡间互联协议实现通信效率跃升,可以期待国内AI大芯片在 scaleup 互联技术也在酝酿更大的动作。以华为为例,其2022 年底推出的“天成”多样算力平台旨在设计更高的算力密度,超节点形态服务器设计将是下一步工作重点。
图28:UALINK 拓展通用 scaleup 协议
资料来源:云,山西券研究所
图29:华为“天成”机柜级算力平台产品
资料来源:华为,山西券研究所
【投资逻辑与建议关注】
聚焦英伟达上游配套,关注国产方案
投资角度来看,国内公司主要聚焦于英伟达上游配件供应,海外连接器巨头配套:高速裸线、CAGE代工将受益于产能扩张和价值量提升。由于与英伟达的联合研发以及对于核心专利的掌握,GB200高速铜连接前期价值量或将主要集中于以安费诺为代表的连接器巨头厂商。安费诺成立于1932年,是大连接器和线缆组件制造商之一,公司总部位于美国康涅狄格州,并在多地设有超过100家子公司及办事处,产品涵盖线缆及连接器等全面组件,下游应用到工业、消费电子、通信等多领域。根据2023年年报,公司用于数据中心占比约为19%,出货地区主要为北美地区。
图30:安费诺2023年收入下游主要领域
资料来源:安费诺2023年年报,山西券研究所
图31:安费诺2023年收入出货地区
资料来源:安费诺2023年年报,山西券研究所
针对GB200集群,国内集中了安费诺大的信息通信产品线配套产能,其对于224G高速线、cage结构件等高速产品配套需求或增加,同时对于中低端产品线的产能外包需求也将外溢。安费诺国内合作伙伴包括乐庭智联(沃尔核材)、神宇股份、鼎通科技、奕东科技等,以沃尔核材为例,根据2024年7月24日投资者关系活动记录表披露,高速通信线订单需求在不断增长,已下单采购几十台绕包机和多台芯线机以进一步满足产能需求,可预见未来由产能提升和产品价值量提升带来的收入增长。
图32:安费诺Spectra-Strip 224G高速线与各种高密度连接器组成了面向数据中心的铜连接解决方案
资料来源:《Amphenol OverPass》,山西券研究所
产业链公司简介
从产品应用领域及与下游客户合作来看,产业链相关推荐公司主要包括线材及连接器相关厂商,包括立讯精密,神宇股份,沃尔核材,新亚电子,鼎通股份、兆龙互联、华丰科技等。
立讯精密:拥有高速铜连接全套解决方案。公司在数据中心通信互联方面产品主要包括电连接(连接器及连接器模组,线缆及线缆模组),光联接(AOC,光模块,光跳线等),以及热管理和电源等。根据公司2024年4月26日投资者关系活动记录表披露,公司可为英伟达NVL72提供约 209 万元的解决方案,包含电连接、光连接、电源管理、 散热等产品,后续有望受益于英伟达高速铜连接组件供应商的拓展以及UALINK成员、国产AI服务器等其他客户的导入。2023年,立讯精密营收2319亿元,其中通讯互联产品及精密组件营收145亿元,高速铜连接将成为立讯通信业务有力增长引擎。
图33:立讯高速铜连接产品
资料来源:立讯精密官网,山西券研究所
立讯精密的子公司汇聚科技专注铜缆和光缆组件产品并切入服务器代工。立讯精密于2022年上半年完成对汇聚科技的,汇聚科技拥有超30年行业经验,以定制电线互联方案起家,目前供应各种铜缆和光缆电线组件、数字电线产品及服务器。其服务器业务于2022年以JDM/ODM模式切入,根据品牌客户的需求深度定制,有望充分利用公司在铜缆和光缆组件的设计制造优势为服务器客户提供差异化解决方案。根据汇聚科技2023年年报,自2023年3月31日至12月31日的会计年度期间收入为48亿港币,电线组件(包括数据中心、电讯、医疗设备、工业设备、汽车)、数字电线(包括网络电线、特种线)以及服务器业务分别占比35.8%、18.0%、46.2%。
风险提示:数据通信组件客户开拓不及预期、224G高端组件产品量产进度不及预期、汇率波动风险、客户相对集中风险。
图34:汇聚科技电信与数据通信连接方案
资料来源:汇聚科技官网,山西券研究所
图35:汇聚科技汽车线束连接方案
资料来源:汇聚科技官网,山西券研究所
沃尔核材:子公司乐庭智联是国内高速线材领军者。公司主营高分子核辐射改性新材料及系列电子、电力、电线产品,其中电线产品主要由子公司乐庭智联经营,包括高速通信线、汽车线、工业线及消费电子线等,为直接线材产品。公司与安费诺、莫仕等头部客户建立了长期稳定合作,多款单通道224G的高速通信线已通过客户测试进入小批量交付阶段。在产能方面,乐庭拥有绕包机140多台,芯线机近20台,仍有几十台绕包机和多台芯线机已订购。外部IO线方面,公司正配合客户进行1.6T高速线产品打样。我们认为公司在高速通信线领域技术储备充分、产能领先,有望充分受益于大客户订单爆发。
风险提示:上游原材料价格上涨公司未做好应对导致毛利率下滑风险,高速通信线产能扩张不及预期导致订单丢失风险,高速通信线良率爬坡不及预期风险,新能源汽车基础设施投资不及预期风险。
图36:乐庭智联QSFP高速电线系列
资料来源:乐庭电线官网,山西券研究所
图37:沃尔核材电线电缆业务近十年收入毛利率变化
资料来源:wind,山西券研究所
神宇股份:专注同轴电缆产品,高速线材异军突起。公司从事高频射频同轴电缆产品生产,主要产品为射频同轴电缆、射频连接器和组件,包括细微射频同轴电缆、细射频同轴电缆、半柔半刚射频同轴电缆、稳相微波射频同轴电缆、军标系列射频同轴电缆等多种产品。公司在智能手机、笔记本等消费电子市场已具备较高的市场份额,在高速数据中心领域已形成定制化、特化产品系列,取得多家国内外重要客户批量供货。公司拥有定制化挤出机、编织机、横卷机等充足产能,目前在手订单良好,2024Q1营收同比增长33.3%,将持续推进新产品研发和量产。
风险提示:客户相对集中风险,铜等原材料价格上涨降低毛利率风险,射频同轴电缆市场竞争加剧导致收入下滑风险,高速通信线人才流失或短缺的风险。
图38:神宇股份产品覆盖通信、消费电子、航空航天、汽车、医疗多领域
资料来源:神宇股份官网,山西券研究所
新亚电子:主要聚焦服务器内部线,安费诺高频高速PCIE线材主要供应商。公司是精细电子线材厂商,主营线材产品涉及消费电子、工业控制、汽车电子、新能源、通信及数据中心等。在高频高速数据线材,公司主要产品包括PCIe4.0/5.0/6.0等,主要用于AI人工智能服务器,向美国安费诺(直接客户为厦门安费诺电子装配有限公司)等客户供货,终端应用客户包括戴尔、惠普、浪潮、谷歌、亚马逊、微软、甲骨文、中科曙光、新华三等服务器制造商。2023年公司营收31.9亿元,通信线缆及数据材料营收14.7亿元,近几年高频高速线材的营收平均在7000万元左右,目前根据客户指引稳步扩产。
风险提示:铜材等原材料价格波动风险,整合风险和对于少数股权的经营管理风险,商誉减值风险,消费电子和通信领域线材竞争激烈导致毛利率下滑风险。
图39:新亚电子下游客户
资料来源:公司招股说明书,山西券研究所
图40:新亚电子用于服务器的SATA线产品
资料来源:新亚电子官网,山西券研究所
鼎通科技:通讯、汽车双轮驱动,在数据中心领域主要供应高速IO壳体以及背板连接器组件。公司高速通讯连接器及组件主要包括高速背板连接器组件和IO连接器组件,形态为精密结构件和壳体(CAGE)等。在通讯领域,公司与安费诺、莫仕、泰科、中航光电等建立了长期稳固合作关系,其QSFP-DD 112G/OSFP-DD/OSFP系列不断加大与客户合作。汽车连接器及其组件主要供应控制系统连接器、高压互锁连接器、线束连接器、高压连接器、电控连接器等,不断加深与比亚迪、长安汽车、南都电源、蜂巢能源、富奥汽车、罗森博格等客户合作。2023年,公司营收6.1亿元,其中通讯连接器、汽车连接器分别实现3.5亿元、2.1亿元。
风险提示:铜材等原材料成本上涨导致毛利率下行风险,市场开拓不及预期导致新增产能消化不足风险,高速通讯连接器新料号导入节奏不及预期风险,汽车行业增速下滑风险。
图41:鼎通科技通讯连接器组件
资料来源:鼎通科技招股书,山西券研究所
兆龙互联:国内数据通信组件和布线领先企业。公司从事数字通信电缆行业,产品包括数据电缆及布线(覆盖从5e到8类的数据电缆)、电缆(包括高速传输电缆、工业数字通信电缆)以及连接产品(包括数据电缆组件、高速电缆组件、工业电缆组件)。在高速通信领域,公司的高速传输电缆用于交换机与服务器集群设备之间、服务器内部的高速平行传输对称电缆,目前已出货单通道112Gb/s的产品。公司致力于将电缆产品向下游延伸至组件,其高速电缆组件拥有高速电缆、PCBA、线端连接器整体制造能力,已实现QSFP-DD 800、OSFP 800等高端DAC/ACC外部IO组件的出货。2023年,公司营收15.6亿元,以数据电缆收入为主,营收12.3亿元,其次连接产品、电缆分别营收1.2亿、1.2亿元。
风险提示:主要原材料价格波动风险,海外投资风险,汇率波动风险,高速电缆组件市场拓展不及预期风险。
图42:兆龙互连高速互连产品
资料来源:兆龙互连2023年年报,山西券研究所
华丰科技:高速背板连接器国产替代先锋,受益于国产算力建设。公司是国有控股的核心骨干高新技术企业,经过改制解决了历史包袱、实现了市场化的经营管理和员工激励。公司聚焦在防务类、通讯类、工业类三大连接器领域,2023年营收8.9亿元,连接器、系统互连产品、组件分别营收5.1亿、2.0亿、1.6亿元。高速线模组有望成为公司未来几年重要引擎,作为国产替代主要承研和制造单位,公司解决了模组生产中的高速连接器、微小零件激光焊接、电阻焊接以及焊接性技术难题,目前已投资建设高速线模组6条产线,并于7月开始进行批量生产交付。公司的高速线模组产品包括背板高速线模组、IO高速线模组、板内CTC高速线模组以及板间BTB等主流架构产品,与海外巨头安费诺等完整对标。目前112G高速背板产品已批量发货,224G产品已达到样品试制合格状态,还实现了服务器液冷cable tray研发以及200针级双LGA IC Socket国产替代。
风险提示:主要客户相对集中的风险,专利申请无效和侵权纠纷风险,军工业务受行业波动订单恢复不及预期风险,高速背板竞争格恶化风险,主要原材料价格上涨的风险。
图43:华丰科技通讯连接器产品
资料来源:华丰科技招股书,山西券研究所
【风险提示】
1)对于高速铜缆价值量预期过于乐观风险。英伟达GB200项目是224G高速铜缆产业界投入大批量生产的产品,目前产业链多处于验或小批量出货阶段。高速铜缆的单机柜价值量、市场空间取决于供应商报价、安费诺毛利率策略、英伟达成本管控等多方面因素,本报告的测算可能过于乐观。
2)GB200机柜量产进度延后导致相关公司订单落地、业绩释放不及预期。GB200产业链涉及到高端制程代工、COWOS封装、HBM3e芯片、光模块、PCB、高速铜缆等诸多环节。任一环节出现良率、产能爬坡瓶颈均会影响GB200机柜量产节奏,从而导致铜连接相关公司业绩释放不及预期。
3)相关公司设备或良率瓶颈导致产能释放不及预期风险。224G高速铜缆生产需要的设备包括挤出机、绕包机及相关测试机台等,行业短时间内爆发可能导致设备交期延长进而导致相关公司产能扩张进度不及预期,从而有订单丢失或份额不及预期风险。
4)原材料成本上涨、良率低导致毛利率不及预期风险。高速铜缆企业的毛利率取决于订单价格、上游铜材、屏蔽缘材料、设备折旧、人员工资等诸多因素,倘若原材料成本上涨超预期或生产良率较低将导致BOM成本、制造费用等占比超出预期,从而导致盈利能力下滑。
5)竞争格恶化风险。首先224G高速线缆组件属高毛利产品,下游连接器巨头若扩产充分可能增加内部产能配套比例从而导致高速线材采购量下降;此外,若更多的企业掌握高速铜缆生产工艺和产能储备,下游客户的选择可能更加多元,高速铜缆企业议价能力相应下降,从而导致订单价格大幅下滑,产生营收增速放缓、毛利率下滑等风险。
6)技术路线不确定风险。本文指出,在AI Scaleup互联中可选通信技术包括PCB、铜缆、AOC、OIO等,当前铜缆在通信性能和方案成本上相对折中为佳方案。随着互联距离从机柜内拓展到机柜间以及通信带宽的进一步增长,光通信可能成为在性能上的唯一解决方案;且随着OIO、CPO等光电集成封装技术成熟,光通信短距互联成本有望进一步下降,铜互联在某些场景使用价值可能被光通信所取代。
4.1 电缆配线概述
市内通信网按照用户分布状况,从市内电话出电缆开始,将电缆芯线分配到各个配线点,既能用户当前需要,又能适应未来的发展,这种分配芯线的方式称作“电缆配线”或用户电缆线路的配线。
1、有关交接箱和分线设备的一般规定
2、交接箱的分类
(1)按交接箱内有无接线端子分为无端子交接箱和有端子交接箱。
(2)按其接续方式不同分为压接式和卡接式两大类。卡接式又分为接线子卡接式和模块卡接式,模块卡接式细分为直卡式和旋转式。
(3)按交接箱安装位置不同分为架空式交接箱的安装、落地式交接箱的安装。
3、交接箱的安装
(1)落地式交接箱的安装
(2)架空式交接箱的安装
4、交接箱的芯线连接:
(1)采用双面旋转模块直接接入背面,旋转端子接入芯线;
(2)采用单面旋转模块采用扣式接线子或模块接线子接入芯线。
(3)接续完毕后,进行对号、缘性能测试。确认合格后,模块支架恢复原位。
5、交接箱的接地:
(1)落地式交接箱屏蔽线接地的制作
交接箱的屏蔽线连接板与箱体相互缘,电缆屏蔽线连接在连接板上并接一个地线,箱体在基座的其中一个固定螺丝上做好地线。如图7—9所示。
(2)架空交接箱屏蔽线接地的制作
交接箱的屏蔽线连接板与箱体缘,屏蔽线连接在连接板上,接一个地气棒,箱体及站台应另接一个地气棒接地。
6.交接箱成端电缆芯线与交接箱模块的连接
如图所示。确认合格后,模块支架恢复原位。交接箱的芯线连接:成端电缆芯线与模块的芯线接续。
(1)采用双面旋转模块直接接入背面,旋转端子接入芯线;
(2)采用单面旋转模块采用扣式接线子或模块接线子接入芯线。
接续完毕后,进行对号、缘性能测试。
7、分线设备的分类和结构
(1)型式 按其接续方式不同可分为压接式和卡接式两大类。按其安装方式不同可分为挂式和嵌式两种。
(2)规格 分线设备产品按其容量可分为5、10、20、30、50、100回线等规格。
(3)标记 产品的完整标记由标准号、型号构成。
示例:市内通信电缆分线盒 YD/T 740—95XFO—03—10
即表示总容量为10回线的XFO—03型市内通信电缆分线盒。
(4)结构形式 本产品由盒体、盒盖和接线排构成
8、分线设备安装
分线设备是配线电缆的终端设备。分线设备在电杆及墙壁上安装,不论采用木质或金属背架均要求牢固、端正、接地良好。室外分线盒在水泥杆上安装和墙式室外分线盒的安装分别如图A和图B所示。分线设备的内部安装如图C所示。
8.用户引入线与引入设备
从电缆分线设备到用户话机的这一段线路叫用户引入线。用户引入线分为两部分,即分线设备下线和用户室外皮线。