长春高中数学暑假辅导 长春初高中暑期辅导

名称:长春高中数学暑假辅导 长春初高中暑期辅导

供应商:吉林省径舟教育信息咨询有限公司

价格:面议

最小起订量:1/课时

地址:吉林省长春市朝阳区同志街1560号汇展大厦505室

手机:18043634409

联系人:郭老师 (请说在中科商务网上看到)

产品编号:90894352

更新时间:2021-02-27

发布者IP:49.221.30.8

详细说明

  径舟教育分享几何题作辅助线的方法。

  1、中点、中位线,延线,平行线。

  如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。

  2、垂线、分角线,翻转全等连。

  如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。

  3、边边若相等,旋转做实验。

  如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”旋转两种。

  4、造角、平、相似,和、差、积、商见。

  如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相似,和差积商见。”

  托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)

  5、两圆若相交,连心公共弦。

  如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。

  6、两圆相切、离,连心,公切线。

  如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。

  7、切线连直径,直角与半圆。

  如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。即切线与直径互为辅助线。

  如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。即直角与半圆互为辅助线。

  8、弧、弦、弦心距;平行、等距、弦。

  如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。

  如遇平行线,则平行线间的距离相等,距离为辅助线;反之,亦成立。

  如遇平行弦,则平行线间的距离相等,所夹的弦亦相等,距离和所夹的弦都可视为辅助线,反之,亦成立。

  有时,圆周角,弦切角,圆心角,圆内角和圆外角也存在因果关系互相联想作辅助线。

  9、面积找底高,多边变三边。

  如遇求面积,(在条件和结论中出现线段的平方、乘积,仍可视为求面积),往往作底或高为辅助线,而两三角形的等底或等高是思考的关键。

  如遇多边形,想法割补成三角形;反之,亦成立。

  另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”。Q

  针对:严重偏科型,基础薄弱性,考试紧张型,苦学无效型,粗心大意型

  长春新高一暑假补习班

  长春假期辅导班

  长春数学暑假辅导

  长春暑假新高二补习学校

  长春高中暑假一对一辅导

  招生对象:初一、初二、初三、高一、高二、高三、中考,高考,军校体育 艺术类考生,中高考全日制辅导一对一

  辅导科目:数学,语文,英语,物理,化学,地理,政治,历史,生物