详细说明
如果因铸件断面温度场较平坦 [图134(a)],或合金的结晶温度范围很宽 [图134
(b)],铸件凝固的某一段时间内,其凝固区域在某时刻贯穿整个铸件断面时,则在凝固区
域里既有已结晶的晶体也有未凝固的液体,这种情况为 “体积凝固方式”,或称 “糊状凝固
方式”。
如果合金的结晶温度范围较窄 [图135(a)],或者铸件断面的温度梯度较大 [图135
图135 “中间凝固方式”示意图
(b)],铸件断面上的凝固区域宽度介于前
二者之间时,则属于 “中间凝固方式”。
凝固区域的宽度可以根据凝固动态曲
线上的 “液相边界”与 “固相边界”之间
的纵向距离直接判断。因此,这个距离的
大小是划分凝固方式的一个准则。如果两
条曲线重合在一起———恒温下结晶的金属,
或者其间距很小,则趋向于逐层凝固方式。
熔化潜热使晶粒瓦解,液体原子具有更高
的能量,而金属的温度并不升高。从热力学角度,在恒压时,外界所供给的潜热,除使体积
膨胀做功外,还增加系统的内能,如式(11)所示。在等温等压下,熵值的增量如式(12)
所示。
系统熵值增加表示原子排列发生紊乱。因此,熔化过程就是金属从规则的原子排列突变
为紊乱的非晶态结构的过程。
2液态金属的结构
(1)从物质熔化 (汽化)过程对液态金属结构的认识如表11所示,金属物质熔化时
的体积一般仅增加3%~5%,即原子平均间距仅增加1%~15%,熔化时的熵值变化量远
小于加热膨胀过程。
① 钢球模型假设液态金属是均质的、密度集中的、
列紊乱的原子堆积体。其中既无晶体区域,又无大到足
容纳另一原子的空穴。在构建液体结构几何模型的实验
,用无规则堆积的钢球灌以油漆,固化后统计单个球接
点的数目。根据统计结果可确定该结构的平均配位数,
液态结构的平均配位数。发现,在紊乱密集的球堆中存
高度致密区,其统计结构获得的偶分布函数g(r)与液体
的衍射实验结构很好吻合。钢球模型形象地描述了液体
程有序远程无序的特征,为奠定液体结构的统计几何基
做出了重要贡献。