C65N断路器具有以下功能:- 短路保护-过载保护- 控制- 隔离适用于工业、民用建筑能源及础设施等领域低压终端电。隔离功能C65 系列断路器符合IEC60947-2/GB14048?2 标准中带有隔离功能断路器的补充安全规定,充分满足对隔离电器的各项要求:冲击耐受电压6kV手柄绿色条纹显示触头处于切实分断状态断开位置可锁定良好的抗冲击性能快速闭合技术C65 系列断路器采用快速闭合设计,触头的闭合与操作者操作方式无关,这种设计将显著降低操作时电弧对触头的影响,提高断路器的电气寿命。A9L916607施耐德浪涌保护器iST65r4P报价 A9L916607施耐德浪涌保护器iST65r4P图片
现代家居用电应按照明回路,电源插座回路,空调回路,分开布线,当其中一个回路(如插座回路)出现故障时,其他回路仍可以正常供电。插座回路须安装漏电保护装置,防止家用电器漏电造成人身电击事故。
1,住户配电箱总开关一般选择双极32-63A小型断路器或隔离开关。
2,照明回路一般10-16A小型断路器。
3,插座回路一般选择16-20A的漏电保护断路器。
4,空调回路一般选择16-25A小型断路器。1.微型漏电器的漏电附件动作时间,有意识的延时是没有的,但是动作是有一个过程的,这个过程需要一定的时间,IEC10091中的5.3.8以及GB16917.1中的5.3.8条例中对此都有明确的限定,要求最大动作时间小于0.3秒,本产品基本上可以做到0.06秒。
2.漏电开关只有漏电保护功能,而漏电保护断路器有短路保护,过载保护和漏电保护功能。空气开关在额定负载时平均操作使用寿命20000次。在了解了漏电开关,空气开关的原理,功能的情况下一般在为客户选配配电箱的过程中,应本着照明小,插座中,空调大的选配原则。可根据客户的要求和装修个性的差异性,结合实际情况进行灵活的配电方案。配电方案有无数种,以下就五种常用的配置方案特点,安装注意事项供客户参考。3.采用条形码管理系统,可靠的条形码和防伪标签双保险系统,双重识别,双重保护。EA9R漏电保护断路器,为预拼装式漏电保护断路器(断路器 漏电附件),是最大限度地避免了误拼装漏电附件的风险。可同时提供过载,短路,漏电保护功能。当发生漏电保护装置动作时,装置的正面有红色的机械指示可区别漏电故障与其它保障。断路器,又称空气开关,也称自动开关,低压断路器。原理是:当工作电流超过额定电流,短路,失压等情况下,自动切断电路。 目前,家庭总开关常见的有闸刀开关配瓷插保险(已被淘汰)或空气开关(带漏电保护的小型断路器)。目前家庭使用DZ系列的空气开关,常见的有以下型号/规格: C16, C25,C32,C40,C60,C80,C100,C120等规格,其中C表示脱扣电流,即起跳电流,例如C32表示起跳电流为32安,一般安装6500W热水器要用C32,安装7500W,8500W热水器要用C40的空开。原始的浪涌保护器羊角形间隙,出现于19世纪末期,用于架空输电线路,防止雷击损坏设备绝缘而造成停电,故称“浪涌保护器”。20世纪20年代,出现了铝浪涌保护器,氧化膜浪涌保护器和丸式浪涌保护器。30年代出现了管式浪涌保护器。50年代出现了碳化硅防雷器。70年代又出现了金属氧化物浪涌保护器。现代高压浪涌保护器,不仅用于限制电力系统中因雷电引起的过电压,也用于限制因系统操作产生的过电压。浪涌也叫突波,顾名思义就是超出正常工作电压的瞬间过电压。本质上讲,浪涌是发生在仅仅几百万分之一秒时间内的一种剧烈脉冲,。可能引起浪涌的原因有:重型设备、短路、电源切换或大型发动机。而含有浪涌阻绝装置的产品可以有效地吸收突发的巨大能量,以保护连接设备免于受损。
1雷电的特性
防雷包括外部防雷和内部防雷。外部防雷以接闪器(避雷针、避雷网、避雷带、避雷线)、引下线、接地装置为主,其主要的功能是为了确保建筑物本体免受直击雷的侵袭,将可能击中建筑物的雷电通过避雷针(带、网、线)、引下线等泄放入大地。内部防雷包括防雷电感应、线路浪涌、地电位反击、雷电波入侵以及电磁与静电感应的措施。其基本方法是采用等电位联结,包括直接连接和通过SPD间接连接,使金属体、设备线路与大地形成一个有条件的等电位体,将因雷击和其他浪涌引起的内部设施分流和感应的雷电流或浪涌电流泄放入大地,从而保护建筑物内人员和设备的安全。
雷电的特点是电压上升非常快(10μs以内),峰值电压高(数万至数百万伏),电流大(几十至几百千安),维持时间较短(几十至几百微秒),传输速度快(以光速传播),能量非常巨大,是浪涌电压中破坏力的一种。
2浪涌保护器的分类
SPD是电子设备雷电防护中不可缺少的一种装置,其作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击。
电源线路SPD :
由于雷击的能量是非常巨大的,需要通过分级泄放的方法,将雷击能量逐步泄放到大地。在直击雷非防护区(LPZ0A)或在直击雷防护区(LPZ0B)与防护区(LPZ1)交界处,安装通过Ⅰ级分类试验的浪涌保护器或限压型浪涌保护器作为级保护,对直击雷电流进行泄放,或者当电源传输线路遭受直接雷击时,将传导的巨大能量进行泄放。在防护区之后的各分区(包含LPZ1区)交界处安装限压型浪涌保护器,作为二、三级或更高等级保护。第二级保护器是针对前级保护器的残余电压以及区内感应雷击的防护设备,在前级发生较大雷击能量吸收时,仍有一部分对设备或第三级保护器而言是相当巨大的能量,会传导过来,需要第二级保护器进一步吸收。同时,经过级防雷器的传输线路也会感应雷击电磁脉冲辐射。当线路足够长时,感应雷的能量就变得足够大,需要第二级保护器进一步对雷击能量实施泄放。第三级保护器对通过第二级保护器的残余雷击能量进行保护。根据被保护设备的耐压等级,假如两级防雷就可以做到限制电压低于设备的耐压水平,就只需要做两级保护;假如设备的耐压水平较低,可能需要四级甚至更多级的保护。
浪涌保护器工作原理图:
“避雷器”或“过电压保护器”英文简写为SPD.浪涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。
浪涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。用于浪涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。
浪涌保护器的基本元器件
1.放电间隙(又称保护间隙):
它一般由暴露在空气中的两根相隔一定间隙的金属棒组成,其中一根金属棒与所需保护设备的电源相线L1或零线(N)相连,另一根金属棒与接地线(PE)相连接,当瞬时过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。这种放电间隙的两金属棒之间的距离可按需要调整,结构较简单,其缺点是灭弧性能差。改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是靠回路的电动力F作用以及热气流的上升作用而使电弧熄灭的。
2.气体放电管:
它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar)的玻璃管或陶瓷管内组成的。为了提高放电管的触发概率,在放电管内还有助触发剂。这种充气放电管有二极型的,也有三极型的, 气体放电管可在直流和交流条件下使用,其所选用的直流放电电压Udc分别如下:在直流条件下使用:Udc≥1.8U0(U0为线路正常工作的直流电压
3.压敏电阻:
它是以ZnO为主要成分的金属氧化物半导体非线性电阻,当作用在其两端的电压达到一定数值后,电阻对电压十分敏感。它的工作原理相当于多个半导体P-N的串并联。压敏电阻的特点是非线性特性好(I=CUα中的非线性系数α),通流容量大(~2KA/cm2),常态泄漏电流小(10-7~10-6A),残压低(取决于压敏电阻的工作电压和通流容量),对瞬时过电压响应时间快(~10-8s),无续流。
压敏电阻的参考电压应由被保护电子设备的耐受电压来确定,应使压敏电阻的残压低于被保护电子设备的而损电压水平,即(Ulma)max≤Ub/K,上式中K为残压比,Ub为被保护设备的而损电压。
4.抑制二极管:
抑制二极管具有箝位限压功能,它是工作在反向击穿区,由于它具有箝位电压低和动作响应快的优点,特别适合用作多级保护电路中的***末几级保护元件。抑制二极管在击穿区内的伏安特性可用下式表示:I=CUα,上式中α为非线性系数,对于齐纳二极管α=7~9,在雪崩二极管α=5~7.
1.放电间隙(又称保护间隙):
它一般由暴露在空气中的两根相隔一定间隙的金属棒组成(如图15a),其中一根金属棒与所需保护设备的电源相线L1或零线(N)相连,另一根金属棒与接地线(PE)相连接,当瞬时过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,避免了被保护设备上的电压升高。这种放电间隙的两金属棒之间的距离可按需要调整,结构较简单,其缺点时灭弧性能差。改进型的放电间隙为角型间隙,它的灭弧功能较前者为好,它是*回路的电动力F作用以及热气流的上升作用而使电弧熄灭的。
2.气体放电管:
它是由相互离开的一对冷阴板封装在充有一定的惰性气体(Ar)的玻璃管或陶瓷管内组成的。为了提高放电管的触发概率,在放电管内还有助触发剂。这种充气放电管有二极型的,也有三极型的,
气体放电管的技术参数主要有:直流放电电压Udc;冲击放电电压Up(一般情况下Up≈(2~3)Udc;工频而授电流In;冲击而授电流Ip;绝缘电阻R(>109Ω);极间电容(1-5PF)气体放电管可在直流和交流条件下使用,其所选用的直流放电电压Udc分别如下:在直流条件下使用:Udc≥1.8U0(U0为线路正常工作的直流电压)
在交流条件下使用:U dc≥1.44Un(Un为线路正常工作的交流电压有效值)
3.压敏电阻:
它是以ZnO为主要成分的金属氧化物半导体非线性电阻,当作用在其两端的电压达到一定数值后,电阻对电压十分敏感。它的工作原理相当于多个半导体P-N的串并联。压敏电阻的特点是非线性特性好(I=CUα中的非线性系数α),通流容量大(~2KA/cm2),常态泄漏电流小(10-7~10-6A),残压低(取决于压敏电阻的工作电压和通流容量),对瞬时过电压响应时间快(~10-8s),无续流。
A9L916600施耐德浪涌保护器IST651P
A9L916603施耐德浪涌保护器iST652P
A9L916604施耐德浪涌保护器iST653P
A9L916605施耐德浪涌保护器iST65r3P+N
A9L916606施耐德浪涌保护器iST653P+N
A9L916607施耐德浪涌保护器iST65r4P
A9L916608施耐德浪涌保护器iST654P
A9L916609施耐德浪涌保护器iST401P
A9L916611施耐德浪涌保护器iST401P+N
A9L916612施耐德浪涌保护器iST402P
A9L916613施耐德浪涌保护器iST403P
A9L916614施耐德浪涌保护器iST40r3P+N
A9L916615施耐德浪涌保护器iST403P+N
A9L916616施耐德浪涌保护器iST40r4P
A9L916617施耐德浪涌保护器iST404P
A9L916618施耐德浪涌保护器iST201P
A9L916620施耐德浪涌保护器iST201P+N
A9L916621施耐德浪涌保护器iST202P
A9L916622施耐德浪涌保护器iST203P
A9L916623施耐德浪涌保护器iST203P+N
A9L916624施耐德浪涌保护器iST204P
A9L916625施耐德浪涌保护器iST203P+N
A9L916870
A9L916800
A9L916802
A9L916803
A9L916804
iPR 65r 3P
A9L916806
iPR 65r 3P+N
A9L916807
iPR 65r 4P
A9L916808
iPR 40r 1P
A9L916809
iPR 40 1P
A9L916812
iPR 40r 1P+N
A9L916813
iPR 40 1P+N
A9L916814
iPR 40r 2P
A9L916815
iPR 40 2P
A9L916816
iPR 40r 3P
A9L916817
iPR 40 3P
A9L916820
iPR 40r 3P+N
A9L916821
iPR 40 3P+N
A9L916822
iPR 40r 4P
A9L916823
iPR 40 4P
A9L916844
iPR 20r 1P
A9L916824
iPR 20 1P
A9L916825
iPR 20r 1P+N
A9L916826
iPR 20 1P+N
A9L916847
iPR 20r 2P
A9L916827
iPR 20 2P