详细说明
铜以其良好的导电和导热能力成为电子和电力工业领域里的首选和主要材料。为了达到所要求的性能标准,使用的几乎都是高纯度的铜。这篇文章主要讨论了这样做的原因,同时还特别关注了一些根本的冶炼原则。其目的是要针对过去十年铜线领域里的相关发展展开进一步的讨论。2. 导体要求:
近年来在解释贵重金属(即铜、银和金)的电子属性上已经取得了巨大的进步。这些元素显示出了很高的导电性能,因为它们的导电电子对于电场的运动几乎没有什么抵抗力。铜尤其是一种优良的导体,因为最外围的电子之间有很大的自由空间,以致于不会发生任何碰撞。而它的电阻率则与这宽大的空间成反比。有几种导电金属都比铜轻,但是输送同样多的电流,它们所要求的横截面更大,所以如果要求节约空间的话,这些金属是不可取的。(例如:在一些小型电力马达)。所以当超重成为问题时,人们就开始使用铝。铜具有商业应用所需要的最好的性能特征,因此银就因为它昂贵的价格而不被采用。
3. 应用:
铜是以其纯净形式而不是合金形式而具有最广泛用途的稀有金属之一。大约有五十多种不同的锻压合金中铜的最小含量是99.3%,虽然只有一小部分在工业上用作电导体。这些低合金中最常用的是电解韧铜,它由这纯度的金属构成,这种金属可与氧在100-650ppm的范围内结成合金。但是在氢气环境中人们建议不要使用ETP铜,因为当它暴露于这些温度时会受到氢脆裂的影响。在这样的环境下,要么使用无氧铜,要么就使用无氧电子铜。含银铜中电源电压器中的应用相当有限,因为它在温度提高时具有较高的强度和较弱的抵抗力。
4. 铜棒和铜线的生产:
二十世纪七十年代以前,几乎所有的铜都是通过分批法生产的,分批法的具体步骤是:将熔化铜浇注并凝固成为叫做“线锭”的特种铸块,然后在稍微受到限制的保护氛围将棒再加热,而后在通过热压法在空气中将这一铸造的树形结构分解成棒的形式。接下来,就将其投放在10%的硫酸里来清除上面的氧化物,通过将一端对接在另一端而形成较长的线圈。现在,实际上所有的铜棒都是通过连续铸造和轧制程序制成的。连续铸造的好处是:较小的杂质微分离、减少了表面的铜氧化物颗粒、在与轧辊接触的过程中钢含量减少、几乎避免了所有的焊缝、降低了整个加工成本。刻意地将氧和铜制成合金,作为溶解氢和硫磺的净化剂,从而在熔化中形成H2O和SO2这两种气体。如果氧成分有一定控制的话,那么就会形成小型汽泡,在合适的条件下,这些汽泡会抵消从液态向固态转变过程中约4%的收缩量。如果所形成的毛孔不十分大的话,它们完全可以在热压期间被消除掉。大部分连续铸造和轧制的产品都装有非破坏性设备,而这些设备往往都进行在线应用来检测表面诸如裂缝和氧化物等缺陷。对于某种高质量的应用,通常要通过机械修整来将表面好多层金属清除掉。大部分圆形和方形铜产品都是通过用传统的人工多晶拉模或天然单晶拉模进行拉丝而生产的。铜具有良好的成形性,铜棒可以很容易地制成比较细的铜丝,而不需要任何中间的退火过程。尽管它具有这种比较理想的特性,但是磁线工业中的一般做法是在拉丝过程中将减面率降到90%左右,之后还要进行退火。除了减面率以外,金相结构也可能会发生变化,从而削弱了铜线的机械特性。磁线经常是通过所谓的“在线过程”来进行生产的,这一过程包括:“慢速”拉丝,接着进行连续退火,同时还要上涂料。最终的铜线产品是通过将退火之间的减面率降低到90%而得到改善的。
5. 杂质的作用:
在高导电率形成过程中化学性质是最重要的变量之一。这些成分中最有害的东西能够降低导电率、提高退火线的机械强度、避免再结晶、有时在生产铜棒的热压过程中还会导致热脆。无数的研究调查表明:极少数量的溶解物都会一次性地提高铜的电阻率。许多杂质都会阶段性地提高其半硬再结晶温度。然而,当杂质与沉淀物或氧化物而不是溶解物混合在一起时,对导电率的有害影响就会降到最低。表2表明了各种各样的单一元素添加到只含有200ppm氧的高纯度ETP铜所产生的影响。一般来说,每百万分之一杂质中的前半部分与相同剂量的后半部分相比影响力更大。然而,需要注意的是,自从建立于1913年的铜电力标准由100%IACS导电率表示以来,商业铜的纯度就得到了极大地改善。如今,大部分商业铜负极的导电率都超过101%IACS。
6. 氧成分的影响:
氧是为了改善铸造铜的坚固性通过对燃汽——金属反应的控制而采用的一种合金成分。同样重要的是,氧在与大部分杂质反应的过程中都起到了一个清除器的作用,而这些杂质当它们溶解在铜基质中时对其特性和退火反应都有巨大的影响作用。相反,当这些杂质与不可溶解的氧化物混合在一起的时候,这些坏作用就被抵消了。从表3可以看出,ETP铜导电率的最大值是200ppm。因而,ETP铜中氧的含量大致在175和450ppm之间。由于分散杂质容易引起热裂,所以通常都尽量避免低氧值。相反,超于这一最佳限制的氧气值并不常见,因为这对可成形性具有附作用。实际的氧含量应是既要有较好退火过程,还要避免可能出现的可塑性问题。