活性焦内具有较多的大孔(>50nm)、中孔(2.0~50nm),较少的微孔(<2nm),孔隙已连贯的形态存在与活性焦内。活性焦吸附污染物时有二种作用机理,一种为物理吸附,一种为化学吸附。物理吸附作用依赖于活性焦多孔比表面积大的特性,将烟气中的污染物截流在活性焦内,利用微孔与分子半径大小相当的特征,将污染物分子限制在活性焦内。化学吸附依靠的是活性焦表面的晶格有缺陷的C原子、含氧官能团和极性表面氧化物,利用它们所带的化学特征,有针对性的固定污染物在活性焦内表面上。
活性焦脱硫脱硝工艺流程
120~160℃的烟气通过增压风机加压进入脱硫岛烟气以一定气速进入吸附塔,烟气均匀的穿过活性焦吸附层,在吸附层内二氧化硫、汞、砷等重金属、HF、HCL和二噁瑛等大分子氧化物被脱除,脱除后的净烟气经净烟道汇集通过烟囱排放。吸附SO2达到饱和的活性焦从吸附塔底部排出,通过输送系统运至解析塔进行加热再生;再生的活性焦经筛分后会同补充的新鲜活性焦再送入吸附系统进行循环吸附使用。经筛分破损活性焦从活性焦循环系统分离出来可以进入锅炉燃烧或再加工成其他产品。再生回收的高浓度SO2混合气体送入硫回收系统作为生产浓酸的原料。
活性焦脱硫系统组成
活性焦脱硫系统由烟气系统、吸附系统、解析系统、活性焦储存及输送系统、硫回收系统等组成。
吸附塔专利技术简介
该烟气均布装置是吸附塔对流吸附得以实现的核心技术,通过该技术可以使烟气在吸附层内均匀流动,同时可以承载活性焦,实现饱和活性焦均匀流畅的被排出,提高了活性焦的利用率,保证了烟气的脱硫效率。
这一技术使活性焦的利用率大大提高,降低了活性焦循环量;烟气均布装置还巧妙利用饱和活性焦有效拦截烟气中的灰尘,使系统的适应性更强;活性焦吸附层,高度灵活调节,可以从容应对烟气中SO2浓度变化。
吸附塔在结构上采用模块化设计,通过灵活的单元开启和关闭可适应锅炉负荷变化,并可实现机组带负荷检修,保证了电厂主机安全稳定运行。
活性焦的解析系统
解析系统在整个系统中起着十分关键的作用,它的作用主要是把SO2,HCl,HF等气体通过加热从饱和AC中解析出来,使得活性焦满足循环使用需要。
在解析塔设计中我们采用了充氮气隔氧技术,有效的防止活性焦的解析氧化;压力阶梯设计,可防止解析后的活性焦再次吸附SO2;解析管气体传质扰动技术,提高了热交换效率,节省解析能耗。
结束语
活性焦脱硫技术不仅仅是一项新的脱硫技术,还可以同时脱除烟气中的HCL、HF、尘、汞、砷等重金属和二噁英等大分子有机物,如果加入喷氨装置可以脱除NOX,可以说是一种高效的烟气洁净方式。其脱硫副产品变废为宝扭转我国硫资源不足、硫矿完全依赖进口,硫磺及其副产品价格长期受制国外硫矿垄断企业把持的局面。
我国是世界上水资源严重缺乏的国家之一,特别是我国北方地区,电力工业的发展受到了水资源的严重制约。2004年,国家发展改革委在《关于燃煤电站项目规划和建设的有关要求的通知》(发改能源[2004]864号)中明确要求:“水资源匮乏地区的燃煤电站要采用节水的干法、半干法烟气脱硫工艺技术。”为此,我公司对国内外干法、半干法烟气脱硫工艺技术进行了广泛调研。调研结果表明:活性焦干法烟气脱硫技术脱硫过程不消耗水,仅消耗以煤为原料生产的活性焦,不产生废水、废渣等二次污染,完全符合国家产业政策和环境保护要求。
火电厂SO2排放指控指标日趋严格,烟气脱硫是控制SO2排放所使用的主要手段,目前国内外使用的工艺系统主要有:石灰石-石膏法、海水法、旋转喷雾干燥法、循环流化床以及活性焦烟气脱硫工艺。
石灰石-石膏湿法烟气脱硫工艺在国内已普遍应用,一般脱硫效率在95%以上,系统运行稳定。但耗水量相对较高。活性焦烟气脱硫近年受到广泛关注,脱硫效率在95%以上,尤其在资源回收和节水方面优点突出。符合干旱地区国家节水政策,尤其对于中国主要产煤区缺水严重且运力紧张的现状,火电厂烟气脱硫的节水技术尤其重要。
文中以2台330 MW机组模拟设计方案为例,对活性焦烟气脱硫技术和工程方案进行论述。
1 活性焦脱硫工艺
1.1 活性焦的吸附反应机理
当烟气中含有足量水汽和 O2 时,活性焦烟气脱硫是一个化学吸附和物理吸附同时存在的过程[1]。首先发生的是物理吸附,然后焦表面的某些含氧络合物基团是SO2吸附及催化氧化的活性中心,在有水和氧气存在的条件下将吸附到活性炭表面的SO2最终催化氧化为 H2SO4。可能的反应路径为:
SO2+H 2O → H2SO3 ,(1)
O2 +H 2 SO 3 → H 2 SO 4 ,(2) 就吸附过程而言,工业上应用较多的是固定床和移动床。其中研究和应用较多的是德国和日本。固定床吸附塔(器)吸附再生工艺存在通量小、不连续、高压降、再生切换频繁等问题,限制了其大规模应用。
1.2活性焦的解吸(再生)反应机理
活性焦的解吸和吸附相比是一个相反的过程。酸存在于活性焦的微孔中,吸附了SO2的活性焦被加热到400 ℃~500 ℃,蓄积在活性焦中的酸或酸盐分解脱附,产生的主要分解物是SO2、N2、CO2、H2O,其物理形态为富SO2的气体,在合适的工艺条件下,SO2体积分率可达到20%以上。可能的反应路径为:
2H2SO4+CàCO2 +2SO2 + 2H2O,(3)
活性焦的解析过程相当于再生过程,在不断地吸附与解析循环中,活性焦受到物理和化学的再生作用,恢复活性后重复使用。
1.3活性焦的工艺系统流程
烟气通过活性焦吸附脱硫装置被净化,吸附饱和的活性焦靠重力流至解吸再生装置,通过加热使活性焦再生,释放出的高浓度SO2混合气体采用现有成熟的工艺技术可用于生产商品浓硫酸、液态SO2、结晶硫磺、硫酸铵等含硫化工产品,再生后的活性焦经筛选后由活性焦输送系统送入活性焦吸附脱硫装置循环使用,筛下的少量小颗粒活性焦可作为锅炉等的燃料[2]。
1.4 技术进展和发展现状
烟气脱硫工艺开发于20世纪60年代,并于80年代开始工业应用,属于干法烟气脱硫工艺。已有数种方法在日本、德国、美国等国家得到工业应用,其代表方法有日立法、住友法、鲁奇法、BF法及Reidluft法等。目前该工艺在国外已由火电厂扩展到石油化工、硫酸和化肥工业等领域。
中国科研和专业机构多年来也在不断进行研究,并在活性炭制备与改性方面取得了很多实验成果。在国家863计划的支持下,在贵州宏福热电厂试验完成了活性焦烟气脱硫装置,处理烟气量178 000 Nm3/h,回收的SO2全部用于生产硫酸,2004年建成。国电清新联合德国WKV公司于2008年中标神华胜利2×660 MW活性焦烟气脱硫工程,工程在设计中。
2 模拟工程烟气脱硫方案
2.1 活性焦烟气脱硫工艺
本工程烟气脱硫工艺采用1炉配置1套脱硫装置,包括:烟气系统、SO2吸附系统、解析再生系统、活性焦输送系统、电加热系统和副产品加工系统。
烟气自除尘器出口引出,进入FGD系统吸附塔,脱硫净化后的烟气经引风机通过烟囱排入大气。吸附SO2的活性焦通过输送系统进入再生塔,用电将其加热到400 ℃左右再生。再生塔排出的活性焦经筛分后,由斗式提升机提升回吸附塔,脱硫获得的高浓度SO2的气体由高温离心风机抽出,送入工业硫酸生产装置。